--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy - f1 model-index: - name: bert-base-uncased-finetuned-clinc_oos results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: test args: plus metrics: - name: Accuracy type: accuracy value: accuracy: 0.8672727272727273 - name: F1 type: f1 value: f1: 0.8593551627139002 --- # bert-base-uncased-finetuned-clinc_oos This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 1.0863 - Accuracy: {'accuracy': 0.8672727272727273} - F1: {'f1': 0.8593551627139002} ## Model Training Details | Parameter | Value | |----------------------|-----------------------------------| | **Task** | text-classification | | **Base Model Name** | bert-base-uncased | | **Dataset Name** | clinc_oos | | **Dataset Config** | plus | | **Batch Size** | 16 | | **Number of Epochs** | 3 | | **Learning Rate** | 0.00002 | ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:| | 4.3415 | 1.0 | 954 | 2.4724 | {'accuracy': 0.7769090909090909} | {'f1': 0.7596942777117995} | | 1.7949 | 2.0 | 1908 | 1.3415 | {'accuracy': 0.8538181818181818} | {'f1': 0.8441232118060242} | | 0.8898 | 3.0 | 2862 | 1.0863 | {'accuracy': 0.8672727272727273} | {'f1': 0.8593551627139002} | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3