--- license: mit tags: - generated_from_trainer datasets: - multi_news metrics: - rouge model-index: - name: bart-large-cnn-finetuned-multi-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: multi_news type: multi_news args: default metrics: - name: Rouge1 type: rouge value: 42.0423 --- # bart-large-cnn-finetuned-multi-news This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.0950 - Rouge1: 42.0423 - Rouge2: 14.8812 - Rougel: 23.3412 - Rougelsum: 36.2613 ## Model description bart-large-cnn fine tuned on sample of multi-news dataset ## Intended uses & limitations The intended use of the model is for downstream summarization tasks but it's limited to input text 1024 words. Any text longer than that would be truncated. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.2037 | 1.0 | 750 | 2.0950 | 42.0423 | 14.8812 | 23.3412 | 36.2613 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6