File size: 2,010 Bytes
e295e80 6c150c0 e295e80 6c150c0 e295e80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-multi-news
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: multi_news
type: multi_news
args: default
metrics:
- name: Rouge1
type: rouge
value: 42.0423
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-multi-news
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0950
- Rouge1: 42.0423
- Rouge2: 14.8812
- Rougel: 23.3412
- Rougelsum: 36.2613
## Model description
bart-large-cnn fine tuned on sample of multi-news dataset
## Intended uses & limitations
The intended use of the model is for downstream summarization tasks but it's limited to input text 1024 words. Any text longer than that would be truncated.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.2037 | 1.0 | 750 | 2.0950 | 42.0423 | 14.8812 | 23.3412 | 36.2613 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|