--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all inference: false tags: - generated_from_trainer datasets: - common_voice_15_0 metrics: - wer model-index: - name: wav2vec2-large-mms-1b-azerbaijani-common_voice15.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_15_0 type: common_voice_15_0 config: az split: test args: az metrics: - name: Wer type: wer value: 0.2631578947368421 --- # wav2vec2-large-mms-1b-azerbaijani-common_voice15.0 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co./facebook/mms-1b-all) on the common_voice_15_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3188 - Wer: 0.2632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.6471 | 2.0 | 10 | 7.6790 | 1.0658 | | 5.6745 | 4.0 | 20 | 4.2727 | 1.0088 | | 3.5016 | 6.0 | 30 | 3.1003 | 1.0 | | 2.6223 | 8.0 | 40 | 1.8137 | 1.0439 | | 1.3939 | 10.0 | 50 | 0.6549 | 0.3947 | | 0.3696 | 12.0 | 60 | 0.3665 | 0.2719 | | 0.2475 | 14.0 | 70 | 0.3188 | 0.2632 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0