--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy base_model: google/vit-base-patch16-224-in21k model-index: - name: vit-base-patch16-224-in21k-finetuned-cifar10 results: - task: type: image-classification name: Image Classification dataset: name: image_folder type: image_folder args: default metrics: - type: accuracy value: 0.9881481481481481 name: Accuracy --- # vit-base-patch16-224-in21k-finetuned-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1357 - Accuracy: 0.9881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2455 | 1.0 | 190 | 0.2227 | 0.9830 | | 0.1363 | 2.0 | 380 | 0.1357 | 0.9881 | | 0.0954 | 3.0 | 570 | 0.1194 | 0.9878 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6