nielsr HF staff commited on
Commit
5d7d709
·
1 Parent(s): 59ca137

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - tapex
5
+ license: apache-2.0
6
+ inference: false
7
+ ---
8
+
9
+ TAPEX-large model pre-trained-only model. This model was proposed in [TAPEX: Table Pre-training via Learning a Neural SQL Executor](https://arxiv.org/abs/2107.07653) by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou. Original repo can be found [here](https://github.com/microsoft/Table-Pretraining).
10
+
11
+ To load it and run inference, you can do the following:
12
+
13
+ ```
14
+ from transformers import BartTokenizer, BartForConditionalGeneration
15
+ import pandas as pd
16
+
17
+ tokenizer = BartTokenizer.from_pretrained("nielsr/tapex-large")
18
+ model = BartForConditionalGeneration.from_pretrained("nielsr/tapex-large")
19
+
20
+ # create table
21
+ data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], 'Number of movies': ["87", "53", "69"]}
22
+ table = pd.DataFrame.from_dict(data)
23
+
24
+ # turn into dict
25
+ table_dict = {"header": list(table.columns), "rows": [list(row.values) for i,row in table.iterrows()]}
26
+
27
+ # turn into format TAPEX expects
28
+ # define the linearizer based on this code: https://github.com/microsoft/Table-Pretraining/blob/main/tapex/processor/table_linearize.py
29
+ linearizer = IndexedRowTableLinearize()
30
+ linear_table = linearizer.process_table(table_dict)
31
+
32
+ # add query
33
+ query = "SELECT ... FROM ..."
34
+ joint_input = query + " " + linear_table
35
+
36
+ # encode
37
+ encoding = tokenizer(joint_input, return_tensors="pt")
38
+
39
+ # forward pass
40
+ outputs = model.generate(**encoding)
41
+
42
+ # decode
43
+ tokenizer.batch_decode(outputs, skip_special_tokens=True)
44
+ ```