File size: 6,306 Bytes
4d75a17 2ef7e0a 4d75a17 6bd0704 2ef7e0a 066eb0c 4d75a17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- vision
- generated_from_trainer
- image-segmentation
datasets:
- segments/sidewalk-semantic
widget:
- src: https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg
example_title: Brugge
base_model: nvidia/mit-b0
model-index:
- name: sidewalk-semantic-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sidewalk-semantic-demo
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7591
- Mean Iou: 0.1135
- Mean Accuracy: 0.1608
- Overall Accuracy: 0.6553
- Per Category Iou: [nan, 0.38512238586129177, 0.723869670479682, 3.007496184239216e-05, 0.04329871029371091, 0.0006725029325634934, nan, 0.0, 0.0, 0.0, 0.5420712902837528, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4939727049879936, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5630706428968278, 0.2911849732223226, 0.5899473333836793, 0.0, 0.0, 1.723395088323998e-05, 0.0]
- Per Category Accuracy: [nan, 0.6995968221991989, 0.8870903675336742, 3.007496184239216e-05, 0.043772127605383085, 0.0006731284624713075, nan, 0.0, 0.0, 0.0, 0.8074880705716012, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8257698903048035, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9746918606102934, 0.3057553223999185, 0.6001142624744604, 0.0, 0.0, 1.7275073149137866e-05, 0.0]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| 2.3589 | 1.0 | 53 | 1.9020 | 0.1014 | 0.1491 | 0.6442 | [0.0, 0.3612513514640175, 0.6751826209974531, 0.0, 0.030376890155720412, 0.0008039971158010613, nan, 2.235273737210043e-05, 0.0, 0.0, 0.5369771616036864, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4924640887729494, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5705205266526164, 0.07944837262494953, 0.5986634961452602, 0.0, 0.0, 0.00011218284533795612, 0.0] | [nan, 0.523053840654786, 0.9469253318772407, 0.0, 0.030589314463641413, 0.0008054985216698098, nan, 2.2371239534454507e-05, 0.0, 0.0, 0.8528562962514211, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7547252442297603, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9698553453075568, 0.08054302832748386, 0.6107703679316233, 0.0, 0.0, 0.00011444735961303836, 0.0] |
| 2.1214 | 2.0 | 106 | 1.7800 | 0.1158 | 0.1627 | 0.6622 | [nan, 0.3912271306195065, 0.7114203717790301, 0.0001503748092119608, 0.04491329385698775, 0.0008871978593462472, nan, 1.3975654410017748e-06, 0.0, 0.0, 0.5167420849064452, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.49676247687874375, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5965069148571663, 0.3115535309159788, 0.636016670211685, 0.0, 0.0, 0.0, 0.0] | [nan, 0.6306423988442347, 0.9198450793635351, 0.0001503748092119608, 0.045391490029595895, 0.0008886008009872551, nan, 1.3982024709034067e-06, 0.0, 0.0, 0.8587918189550764, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8103648148965297, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9600035488335386, 0.3307256120335472, 0.6505175702762634, 0.0, 0.0, 0.0, 0.0] |
| 1.9022 | 3.0 | 159 | 1.7591 | 0.1135 | 0.1608 | 0.6553 | [nan, 0.38512238586129177, 0.723869670479682, 3.007496184239216e-05, 0.04329871029371091, 0.0006725029325634934, nan, 0.0, 0.0, 0.0, 0.5420712902837528, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4939727049879936, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.5630706428968278, 0.2911849732223226, 0.5899473333836793, 0.0, 0.0, 1.723395088323998e-05, 0.0] | [nan, 0.6995968221991989, 0.8870903675336742, 3.007496184239216e-05, 0.043772127605383085, 0.0006731284624713075, nan, 0.0, 0.0, 0.0, 0.8074880705716012, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8257698903048035, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.9746918606102934, 0.3057553223999185, 0.6001142624744604, 0.0, 0.0, 1.7275073149137866e-05, 0.0] |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|