nicolassaint commited on
Commit
1549895
1 Parent(s): 02bbe8d

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:n<1K
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: BAAI/bge-large-en
12
+ metrics:
13
+ - cosine_accuracy
14
+ - dot_accuracy
15
+ - manhattan_accuracy
16
+ - euclidean_accuracy
17
+ - max_accuracy
18
+ widget:
19
+ - source_sentence: Double pig.
20
+ sentences:
21
+ - Ah, triple pig!
22
+ - On the square outline.
23
+ - a boy sleeps in a car
24
+ - source_sentence: dog in pool
25
+ sentences:
26
+ - The dog is playing.
27
+ - A boy is with his mum.
28
+ - No one wanted Singapore.
29
+ - source_sentence: a man sits
30
+ sentences:
31
+ - The man is outside
32
+ - Crafts are being done.
33
+ - No way! She yelled.
34
+ - source_sentence: Yes it did.
35
+ sentences:
36
+ - Yes.
37
+ - Two people are outside.
38
+ - Two women are sleeping.
39
+ - source_sentence: a man sleeps
40
+ sentences:
41
+ - the man is at home sleeping
42
+ - a girl sits in a chair
43
+ - two women paint in a field
44
+ pipeline_tag: sentence-similarity
45
+ model-index:
46
+ - name: SentenceTransformer based on BAAI/bge-large-en
47
+ results:
48
+ - task:
49
+ type: triplet
50
+ name: Triplet
51
+ dataset:
52
+ name: all nli test
53
+ type: all-nli-test
54
+ metrics:
55
+ - type: cosine_accuracy
56
+ value: 0.9536995006808897
57
+ name: Cosine Accuracy
58
+ - type: dot_accuracy
59
+ value: 0.0463004993191103
60
+ name: Dot Accuracy
61
+ - type: manhattan_accuracy
62
+ value: 0.9529429565743683
63
+ name: Manhattan Accuracy
64
+ - type: euclidean_accuracy
65
+ value: 0.9536995006808897
66
+ name: Euclidean Accuracy
67
+ - type: max_accuracy
68
+ value: 0.9536995006808897
69
+ name: Max Accuracy
70
+ ---
71
+
72
+ # SentenceTransformer based on BAAI/bge-large-en
73
+
74
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
75
+
76
+ ## Model Details
77
+
78
+ ### Model Description
79
+ - **Model Type:** Sentence Transformer
80
+ - **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
81
+ - **Maximum Sequence Length:** 512 tokens
82
+ - **Output Dimensionality:** 1024 tokens
83
+ - **Similarity Function:** Cosine Similarity
84
+ <!-- - **Training Dataset:** Unknown -->
85
+ - **Language:** en
86
+ <!-- - **License:** Unknown -->
87
+
88
+ ### Model Sources
89
+
90
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
91
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
92
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
93
+
94
+ ### Full Model Architecture
95
+
96
+ ```
97
+ SentenceTransformer(
98
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
99
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
100
+ (2): Normalize()
101
+ )
102
+ ```
103
+
104
+ ## Usage
105
+
106
+ ### Direct Usage (Sentence Transformers)
107
+
108
+ First install the Sentence Transformers library:
109
+
110
+ ```bash
111
+ pip install -U sentence-transformers
112
+ ```
113
+
114
+ Then you can load this model and run inference.
115
+ ```python
116
+ from sentence_transformers import SentenceTransformer
117
+
118
+ # Download from the 🤗 Hub
119
+ model = SentenceTransformer("nicolassaint/mpnet-base-all-nli-triplet")
120
+ # Run inference
121
+ sentences = [
122
+ 'a man sleeps',
123
+ 'the man is at home sleeping',
124
+ 'a girl sits in a chair',
125
+ ]
126
+ embeddings = model.encode(sentences)
127
+ print(embeddings.shape)
128
+ # [3, 1024]
129
+
130
+ # Get the similarity scores for the embeddings
131
+ similarities = model.similarity(embeddings, embeddings)
132
+ print(similarities.shape)
133
+ # [3, 3]
134
+ ```
135
+
136
+ <!--
137
+ ### Direct Usage (Transformers)
138
+
139
+ <details><summary>Click to see the direct usage in Transformers</summary>
140
+
141
+ </details>
142
+ -->
143
+
144
+ <!--
145
+ ### Downstream Usage (Sentence Transformers)
146
+
147
+ You can finetune this model on your own dataset.
148
+
149
+ <details><summary>Click to expand</summary>
150
+
151
+ </details>
152
+ -->
153
+
154
+ <!--
155
+ ### Out-of-Scope Use
156
+
157
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
+ -->
159
+
160
+ ## Evaluation
161
+
162
+ ### Metrics
163
+
164
+ #### Triplet
165
+ * Dataset: `all-nli-test`
166
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
167
+
168
+ | Metric | Value |
169
+ |:-------------------|:-----------|
170
+ | cosine_accuracy | 0.9537 |
171
+ | dot_accuracy | 0.0463 |
172
+ | manhattan_accuracy | 0.9529 |
173
+ | euclidean_accuracy | 0.9537 |
174
+ | **max_accuracy** | **0.9537** |
175
+
176
+ <!--
177
+ ## Bias, Risks and Limitations
178
+
179
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
180
+ -->
181
+
182
+ <!--
183
+ ### Recommendations
184
+
185
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
186
+ -->
187
+
188
+ ## Training Details
189
+
190
+ ### Training Dataset
191
+
192
+ #### Unnamed Dataset
193
+
194
+
195
+ * Size: 66 training samples
196
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | anchor | positive | negative |
199
+ |:--------|:--------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
200
+ | type | string | string | string |
201
+ | details | <ul><li>min: 3 tokens</li><li>mean: 4.24 tokens</li><li>max: 6 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.58 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 46.21 tokens</li><li>max: 78 tokens</li></ul> |
202
+ * Samples:
203
+ | anchor | positive | negative |
204
+ |:---------------------|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
205
+ | <code>Odeadom</code> | <code>Office de développement de l'économie agricole des départements d'outre-mer</code> | <code>L'Office d'Eradication des Déchets Agricoles dans les Départements Métropolitains.</code> |
206
+ | <code>OFII</code> | <code>Office français de l'immigration et de l'intégration</code> | <code>L'Office français de l'immigration et de l'intégration est un organisme chargé de faciliter les déplacements internationaux des entreprises françaises à travers le monde.</code> |
207
+ | <code>Ofpra</code> | <code>Office français de protection des réfugiés et apatrides</code> | <code>L'Ofpra est un organisme chargé de l'évaluation et du contrôle des demandes d'asile présentées par les étrangers qui souhaitent s'installer en France, tout en veillant à ce que ces derniers ne représentent pas une menace pour la sécurité nationale.</code> |
208
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
209
+ ```json
210
+ {
211
+ "scale": 20.0,
212
+ "similarity_fct": "cos_sim"
213
+ }
214
+ ```
215
+
216
+ ### Evaluation Dataset
217
+
218
+ #### sentence-transformers/all-nli
219
+
220
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
221
+ * Size: 6,584 evaluation samples
222
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | anchor | positive | negative |
225
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
226
+ | type | string | string | string |
227
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
228
+ * Samples:
229
+ | anchor | positive | negative |
230
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
231
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
232
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
233
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
234
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
235
+ ```json
236
+ {
237
+ "scale": 20.0,
238
+ "similarity_fct": "cos_sim"
239
+ }
240
+ ```
241
+
242
+ ### Training Hyperparameters
243
+ #### Non-Default Hyperparameters
244
+
245
+ - `eval_strategy`: steps
246
+ - `per_device_train_batch_size`: 16
247
+ - `per_device_eval_batch_size`: 16
248
+ - `num_train_epochs`: 1
249
+ - `warmup_ratio`: 0.1
250
+ - `fp16`: True
251
+ - `batch_sampler`: no_duplicates
252
+
253
+ #### All Hyperparameters
254
+ <details><summary>Click to expand</summary>
255
+
256
+ - `overwrite_output_dir`: False
257
+ - `do_predict`: False
258
+ - `eval_strategy`: steps
259
+ - `prediction_loss_only`: True
260
+ - `per_device_train_batch_size`: 16
261
+ - `per_device_eval_batch_size`: 16
262
+ - `per_gpu_train_batch_size`: None
263
+ - `per_gpu_eval_batch_size`: None
264
+ - `gradient_accumulation_steps`: 1
265
+ - `eval_accumulation_steps`: None
266
+ - `learning_rate`: 5e-05
267
+ - `weight_decay`: 0.0
268
+ - `adam_beta1`: 0.9
269
+ - `adam_beta2`: 0.999
270
+ - `adam_epsilon`: 1e-08
271
+ - `max_grad_norm`: 1.0
272
+ - `num_train_epochs`: 1
273
+ - `max_steps`: -1
274
+ - `lr_scheduler_type`: linear
275
+ - `lr_scheduler_kwargs`: {}
276
+ - `warmup_ratio`: 0.1
277
+ - `warmup_steps`: 0
278
+ - `log_level`: passive
279
+ - `log_level_replica`: warning
280
+ - `log_on_each_node`: True
281
+ - `logging_nan_inf_filter`: True
282
+ - `save_safetensors`: True
283
+ - `save_on_each_node`: False
284
+ - `save_only_model`: False
285
+ - `restore_callback_states_from_checkpoint`: False
286
+ - `no_cuda`: False
287
+ - `use_cpu`: False
288
+ - `use_mps_device`: False
289
+ - `seed`: 42
290
+ - `data_seed`: None
291
+ - `jit_mode_eval`: False
292
+ - `use_ipex`: False
293
+ - `bf16`: False
294
+ - `fp16`: True
295
+ - `fp16_opt_level`: O1
296
+ - `half_precision_backend`: auto
297
+ - `bf16_full_eval`: False
298
+ - `fp16_full_eval`: False
299
+ - `tf32`: None
300
+ - `local_rank`: 0
301
+ - `ddp_backend`: None
302
+ - `tpu_num_cores`: None
303
+ - `tpu_metrics_debug`: False
304
+ - `debug`: []
305
+ - `dataloader_drop_last`: False
306
+ - `dataloader_num_workers`: 0
307
+ - `dataloader_prefetch_factor`: None
308
+ - `past_index`: -1
309
+ - `disable_tqdm`: False
310
+ - `remove_unused_columns`: True
311
+ - `label_names`: None
312
+ - `load_best_model_at_end`: False
313
+ - `ignore_data_skip`: False
314
+ - `fsdp`: []
315
+ - `fsdp_min_num_params`: 0
316
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
317
+ - `fsdp_transformer_layer_cls_to_wrap`: None
318
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
319
+ - `deepspeed`: None
320
+ - `label_smoothing_factor`: 0.0
321
+ - `optim`: adamw_torch
322
+ - `optim_args`: None
323
+ - `adafactor`: False
324
+ - `group_by_length`: False
325
+ - `length_column_name`: length
326
+ - `ddp_find_unused_parameters`: None
327
+ - `ddp_bucket_cap_mb`: None
328
+ - `ddp_broadcast_buffers`: False
329
+ - `dataloader_pin_memory`: True
330
+ - `dataloader_persistent_workers`: False
331
+ - `skip_memory_metrics`: True
332
+ - `use_legacy_prediction_loop`: False
333
+ - `push_to_hub`: False
334
+ - `resume_from_checkpoint`: None
335
+ - `hub_model_id`: None
336
+ - `hub_strategy`: every_save
337
+ - `hub_private_repo`: False
338
+ - `hub_always_push`: False
339
+ - `gradient_checkpointing`: False
340
+ - `gradient_checkpointing_kwargs`: None
341
+ - `include_inputs_for_metrics`: False
342
+ - `eval_do_concat_batches`: True
343
+ - `fp16_backend`: auto
344
+ - `push_to_hub_model_id`: None
345
+ - `push_to_hub_organization`: None
346
+ - `mp_parameters`:
347
+ - `auto_find_batch_size`: False
348
+ - `full_determinism`: False
349
+ - `torchdynamo`: None
350
+ - `ray_scope`: last
351
+ - `ddp_timeout`: 1800
352
+ - `torch_compile`: False
353
+ - `torch_compile_backend`: None
354
+ - `torch_compile_mode`: None
355
+ - `dispatch_batches`: None
356
+ - `split_batches`: None
357
+ - `include_tokens_per_second`: False
358
+ - `include_num_input_tokens_seen`: False
359
+ - `neftune_noise_alpha`: None
360
+ - `optim_target_modules`: None
361
+ - `batch_eval_metrics`: False
362
+ - `eval_on_start`: False
363
+ - `batch_sampler`: no_duplicates
364
+ - `multi_dataset_batch_sampler`: proportional
365
+
366
+ </details>
367
+
368
+ ### Training Logs
369
+ | Epoch | Step | all-nli-test_max_accuracy |
370
+ |:-----:|:----:|:-------------------------:|
371
+ | 1.0 | 5 | 0.9537 |
372
+
373
+
374
+ ### Framework Versions
375
+ - Python: 3.10.14
376
+ - Sentence Transformers: 3.0.0
377
+ - Transformers: 4.42.3
378
+ - PyTorch: 2.3.1+cu121
379
+ - Accelerate: 0.32.1
380
+ - Datasets: 2.20.0
381
+ - Tokenizers: 0.19.1
382
+
383
+ ## Citation
384
+
385
+ ### BibTeX
386
+
387
+ #### Sentence Transformers
388
+ ```bibtex
389
+ @inproceedings{reimers-2019-sentence-bert,
390
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
391
+ author = "Reimers, Nils and Gurevych, Iryna",
392
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
393
+ month = "11",
394
+ year = "2019",
395
+ publisher = "Association for Computational Linguistics",
396
+ url = "https://arxiv.org/abs/1908.10084",
397
+ }
398
+ ```
399
+
400
+ #### MultipleNegativesRankingLoss
401
+ ```bibtex
402
+ @misc{henderson2017efficient,
403
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
404
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
405
+ year={2017},
406
+ eprint={1705.00652},
407
+ archivePrefix={arXiv},
408
+ primaryClass={cs.CL}
409
+ }
410
+ ```
411
+
412
+ <!--
413
+ ## Glossary
414
+
415
+ *Clearly define terms in order to be accessible across audiences.*
416
+ -->
417
+
418
+ <!--
419
+ ## Model Card Authors
420
+
421
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
422
+ -->
423
+
424
+ <!--
425
+ ## Model Card Contact
426
+
427
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
428
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e0d9894b84e91acd57e122bdfa46ff8b65dafeb50f61fa0e703be98f90b155a
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff