--- license: apache-2.0 base_model: openai/whisper-medium tags: - whisper-event - generated_from_trainer datasets: - common_voice_15_0 metrics: - wer model-index: - name: Whisper da-nst results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_15_0 type: common_voice_15_0 config: da split: test args: da metrics: - name: Wer type: wer value: 28.276087362329662 --- # Whisper da-nst This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the common_voice_15_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7829 - Wer: 28.2761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0046 | 4.03 | 1000 | 0.7389 | 31.9209 | | 0.003 | 9.02 | 2000 | 0.7225 | 29.6108 | | 0.0001 | 14.01 | 3000 | 0.7554 | 28.3788 | | 0.0 | 18.04 | 4000 | 0.7761 | 28.3508 | | 0.0 | 23.03 | 5000 | 0.7829 | 28.2761 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1