File size: 2,461 Bytes
18e295b
 
 
 
 
 
 
de0f796
18e295b
 
 
 
 
 
 
 
 
de0f796
 
18e295b
 
 
 
 
 
de0f796
18e295b
 
 
 
 
 
 
de0f796
18e295b
de0f796
 
18e295b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0f796
18e295b
 
 
 
de0f796
 
 
 
 
 
 
 
 
 
 
 
 
18e295b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: openai/whisper-medium
tags:
- whisper-event
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper da-nst
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_17_0
      type: common_voice_17_0
      config: da
      split: test
      args: da
    metrics:
    - name: Wer
      type: wer
      value: 28.635316438541807
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper da-nst

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the common_voice_17_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8780
- Wer: 28.6353

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 11000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.0096        | 4.01  | 1000  | 0.7403          | 31.2960 |
| 0.0046        | 9.0   | 2000  | 0.7646          | 29.8505 |
| 0.0016        | 13.02 | 3000  | 0.7695          | 30.8398 |
| 0.0009        | 18.01 | 4000  | 0.7821          | 31.2102 |
| 0.0006        | 22.02 | 5000  | 0.8035          | 31.6303 |
| 0.0011        | 27.01 | 6000  | 0.8169          | 29.6336 |
| 0.0001        | 32.0  | 7000  | 0.8244          | 29.6246 |
| 0.0           | 36.01 | 8000  | 0.8461          | 28.8205 |
| 0.0           | 41.01 | 9000  | 0.8633          | 28.7754 |
| 0.0           | 45.02 | 10000 | 0.8738          | 28.6986 |
| 0.0           | 50.01 | 11000 | 0.8780          | 28.6353 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1