File size: 15,862 Bytes
a0a61c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
"""
ChAda-ViT (i.e Channel Adaptive ViT) is a variant of ViT that can handle multi-channel images.
"""
import math
from typing import Optional, Union, Callable
import torch
import torch.nn as nn
from transformers import PreTrainedModel
from torch import Tensor
import torch.nn.functional as F
from torch.nn.modules.module import Module
from torch.nn.modules.activation import MultiheadAttention
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
from utils import trunc_normal_
from config_chada_vit import ChAdaViTConfig
def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
class TransformerEncoderLayer(Module):
r"""
Mostly copied from torch.nn.TransformerEncoderLayer, but with the following changes:
- Added the possibility to retrieve the attention weights
"""
__constants__ = ["batch_first", "norm_first"]
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
layer_norm_eps: float = 1e-5,
batch_first: bool = False,
norm_first: bool = False,
device=None,
dtype=None,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(
embed_dim=d_model,
num_heads=nhead,
dropout=dropout,
batch_first=batch_first,
**factory_kwargs,
)
# Implementation of Feedforward model
self.linear1 = Linear(d_model, dim_feedforward, **factory_kwargs)
self.dropout = Dropout(dropout)
self.linear2 = Linear(dim_feedforward, d_model, **factory_kwargs)
self.norm_first = norm_first
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.dropout1 = Dropout(dropout)
self.dropout2 = Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = _get_activation_fn(activation)
# We can't test self.activation in forward() in TorchScript,
# so stash some information about it instead.
if activation is F.relu:
self.activation_relu_or_gelu = 1
elif activation is F.gelu:
self.activation_relu_or_gelu = 2
else:
self.activation_relu_or_gelu = 0
self.activation = activation
def __setstate__(self, state):
super(TransformerEncoderLayer, self).__setstate__(state)
if not hasattr(self, "activation"):
self.activation = F.relu
def forward(
self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
return_attention=False,
) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
x = src
if self.norm_first:
attn, attn_weights = self._sa_block(
x=self.norm1(x),
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
return_attention=return_attention,
)
if return_attention:
return attn_weights
x = x + attn
x = x + self._ff_block(self.norm2(x))
else:
attn, attn_weights = self._sa_block(
x=self.norm1(x),
attn_mask=src_mask,
key_padding_mask=src_key_padding_mask,
return_attention=return_attention,
)
if return_attention:
return attn_weights
x = self.norm1(x + attn)
x = self.norm2(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(
self,
x: Tensor,
attn_mask: Optional[Tensor],
key_padding_mask: Optional[Tensor],
return_attention: bool = False,
) -> Tensor:
x, attn_weights = self.self_attn(
x,
x,
x,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=return_attention,
average_attn_weights=False,
)
return self.dropout1(x), attn_weights
# feed forward block
def _ff_block(self, x: Tensor) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
class TokenLearner(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=16, in_chans=1, embed_dim=768):
super().__init__()
num_patches = (img_size // patch_size) * (img_size // patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2)
x = x.transpose(1, 2)
return x
class ChAdaViTModel(PreTrainedModel):
"""Channel Adaptive Vision Transformer"""
config_class = ChAdaViTConfig
def __init__(self, config):
super().__init__(config)
# Embeddings dimension
self.num_features = self.embed_dim = config.embed_dim
# Num of maximum channels in the batch
self.max_channels = config.max_number_channels
# Tokenization module
self.token_learner = TokenLearner(
img_size=config.img_size[0],
patch_size=config.patch_size,
in_chans=config.in_chans,
embed_dim=self.embed_dim,
)
num_patches = self.token_learner.num_patches
self.cls_token = nn.Parameter(
torch.zeros(1, 1, self.embed_dim)
) # (B, max_channels * num_tokens, embed_dim)
self.channel_token = nn.Parameter(
torch.zeros(1, self.max_channels, 1, self.embed_dim)
) # (B, max_channels, 1, embed_dim)
self.pos_embed = nn.Parameter(
torch.zeros(1, 1, num_patches + 1, self.embed_dim)
) # (B, max_channels, num_tokens, embed_dim)
self.pos_drop = nn.Dropout(p=config.drop_rate)
# TransformerEncoder block
dpr = [
x.item() for x in torch.linspace(0, config.drop_path_rate, config.depth)
] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
TransformerEncoderLayer(
d_model=self.embed_dim,
nhead=config.num_heads,
dim_feedforward=2048,
dropout=dpr[i],
batch_first=True,
)
for i in range(config.depth)
]
)
self.norm = nn.LayerNorm(self.embed_dim)
# Classifier head
self.head = nn.Linear(self.embed_dim, config.num_classes) if config.num_classes > 0 else nn.Identity()
# Return only the [CLS] token or all tokens
self.return_all_tokens = config.return_all_tokens
trunc_normal_(self.pos_embed, std=0.02)
trunc_normal_(self.cls_token, std=0.02)
trunc_normal_(self.channel_token, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def add_pos_encoding_per_channel(self, x, w, h, class_pos_embed: bool = False):
"""
Adds num_patches positional embeddings to EACH of the channels.
"""
npatch = x.shape[2]
N = self.pos_embed.shape[2] - 1
# --------------------- [CLS] positional encoding --------------------- #
if class_pos_embed:
return self.pos_embed[:, :, 0]
# --------------------- Patches positional encoding --------------------- #
# If the input size is the same as the training size, return the positional embeddings for the desired type
if npatch == N and w == h:
return self.pos_embed[:, :, 1:]
# Otherwise, interpolate the positional encoding for the input tokens
class_pos_embed = self.pos_embed[:, :, 0]
patch_pos_embed = self.pos_embed[:, :, 1:]
dim = x.shape[-1]
w0 = w // self.token_learner.patch_size
h0 = h // self.token_learner.patch_size
# a small number is added by DINO team to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + 0.1, h0 + 0.1
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2),
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
mode="bicubic",
)
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed.unsqueeze(0)
def channel_aware_tokenization(self, x, index, list_num_channels, max_channels=10):
B, nc, w, h = x.shape # (B*num_channels, 1, w, h)
# Tokenize through linear embedding
tokens_per_channel = self.token_learner(x)
# Concatenate tokens per channel in each image
chunks = torch.split(tokens_per_channel, list_num_channels[index], dim=0)
# Pad the tokens tensor with zeros for each image separately in the chunks list
padded_tokens = [
torch.cat(
[
chunk,
torch.zeros(
(max_channels - chunk.size(0), chunk.size(1), chunk.size(2)),
device=chunk.device,
),
],
dim=0,
)
if chunk.size(0) < max_channels
else chunk
for chunk in chunks
]
# Stack along the batch dimension
padded_tokens = torch.stack(padded_tokens, dim=0)
num_tokens = padded_tokens.size(2)
# Reshape the patches embeddings on the channel dimension
padded_tokens = padded_tokens.reshape(padded_tokens.size(0), -1, padded_tokens.size(3))
# Compute the masking for avoiding self-attention on empty padded channels
channel_mask = torch.all(padded_tokens == 0.0, dim=-1)
# Destack to obtain the original number of channels
padded_tokens = padded_tokens.reshape(-1, max_channels, num_tokens, padded_tokens.size(-1))
# Add the [POS] token to the embed patch tokens
padded_tokens = padded_tokens + self.add_pos_encoding_per_channel(
padded_tokens, w, h, class_pos_embed=False
)
# Add the [CHANNEL] token to the embed patch tokens
if max_channels == self.max_channels:
channel_tokens = self.channel_token.expand(padded_tokens.shape[0], -1, padded_tokens.shape[2], -1)
padded_tokens = padded_tokens + channel_tokens
# Restack the patches embeddings on the channel dimension
embeddings = padded_tokens.reshape(padded_tokens.size(0), -1, padded_tokens.size(3))
# Expand the [CLS] token to the batch dimension
cls_tokens = self.cls_token.expand(embeddings.shape[0], -1, -1)
# Add [POS] positional encoding to the [CLS] token
cls_tokens = cls_tokens + self.add_pos_encoding_per_channel(embeddings, w, h, class_pos_embed=True)
# Concatenate the [CLS] token to the embed patch tokens
embeddings = torch.cat([cls_tokens, embeddings], dim=1)
# Adding a False value to the beginning of each channel_mask to account for the [CLS] token
channel_mask = torch.cat(
[
torch.tensor([False], device=channel_mask.device).expand(channel_mask.size(0), 1),
channel_mask,
],
dim=1,
)
return self.pos_drop(embeddings), channel_mask
def forward(self, x, index, list_num_channels):
# Apply the TokenLearner module to obtain learnable tokens
x, channel_mask = self.channel_aware_tokenization(
x, index, list_num_channels
) # (B*num_channels, embed_dim)
# Apply the self-attention layers with masked self-attention
for blk in self.blocks:
x = blk(
x, src_key_padding_mask=channel_mask
) # Use src_key_padding_mask to mask out padded tokens
# Normalize
x = self.norm(x)
if self.return_all_tokens:
# Create a mask to select non-masked tokens (excluding CLS token)
non_masked_tokens_mask = ~channel_mask[:, 1:]
non_masked_tokens = x[:, 1:][non_masked_tokens_mask]
return non_masked_tokens # return non-masked tokens (excluding CLS token)
else:
return x[:, 0] # return only the [CLS] token
def channel_token_sanity_check(self, x):
"""
Helper function to check consistency of channel tokens.
"""
# 1. Compare Patches Across Different Channels
print("Values for the first patch across different channels:")
for ch in range(10): # Assuming 10 channels
print(f"Channel {ch + 1}:", x[0, ch, 0, :5]) # Print first 5 values of the embedding for brevity
print("\n")
# 2. Compare Patches Within the Same Channel
for ch in range(10):
is_same = torch.all(x[0, ch, 0] == x[0, ch, 1])
print(f"First and second patch embeddings are the same for Channel {ch + 1}: {is_same.item()}")
# 3. Check Consistency Across Batch
print("Checking consistency of channel tokens across the batch:")
for ch in range(10):
is_consistent = torch.all(x[0, ch, 0] == x[1, ch, 0])
print(
f"Channel token for first patch is consistent between first and second image for Channel {ch + 1}: {is_consistent.item()}"
)
def get_last_selfattention(self, x):
x, channel_mask = self.channel_aware_tokenization(x, index=0, list_num_channels=[1], max_channels=1)
for i, blk in enumerate(self.blocks):
if i < len(self.blocks) - 1:
x = blk(x, src_key_padding_mask=channel_mask)
else:
# return attention of the last block
return blk(x, src_key_padding_mask=channel_mask, return_attention=True)
def get_intermediate_layers(self, x, n=1):
x, channel_mask = self.channel_aware_tokenization(x)
# return the output tokens from the `n` last blocks
output = []
for i, blk in enumerate(self.blocks):
x = blk(x, src_key_padding_mask=channel_mask)
if len(self.blocks) - i <= n:
output.append(self.norm(x))
return output
|