--- license: mit base_model: LIAMF-USP/roberta-large-finetuned-race tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-mqa-formrat results: [] --- # roberta-mqa-formrat This model is a fine-tuned version of [LIAMF-USP/roberta-large-finetuned-race](https://huggingface.co./LIAMF-USP/roberta-large-finetuned-race) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6094 - Accuracy: 0.2187 - F1: 0.1888 - Precision: 0.2172 - Recall: 0.2109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.6056 | 1.0 | 3712 | 1.6094 | 0.2093 | 0.1083 | 0.2005 | 0.2009 | | 1.6141 | 2.0 | 7424 | 1.6094 | 0.2131 | 0.1026 | 0.2153 | 0.2034 | | 1.6148 | 3.0 | 11136 | 1.6094 | 0.2187 | 0.1888 | 0.2172 | 0.2109 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1