--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-finetuned-mathqa results: [] --- # distilbert-base-finetuned-mathqa This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1648 - Accuracy: 0.9576 - F1: 0.9577 - Precision: 0.9578 - Recall: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2186 | 1.0 | 2970 | 0.1849 | 0.9455 | 0.9456 | 0.9460 | 0.9454 | | 0.1889 | 2.0 | 5940 | 0.1687 | 0.9539 | 0.9540 | 0.9539 | 0.9540 | | 0.1528 | 3.0 | 8910 | 0.1648 | 0.9576 | 0.9577 | 0.9578 | 0.9576 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1