nickprock commited on
Commit
6102be4
·
verified ·
1 Parent(s): 04d62e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -6
README.md CHANGED
@@ -1,12 +1,16 @@
1
  ---
2
- library_name: sentence-transformers
3
  pipeline_tag: sentence-similarity
4
  tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
  - transformers
9
-
 
 
 
 
 
10
  ---
11
 
12
  # nickprock/sentence-bert-base-italian-xxl-uncased-sts-matryoshka
@@ -27,11 +31,16 @@ Then you can use the model like this:
27
 
28
  ```python
29
  from sentence_transformers import SentenceTransformer
30
- sentences = ["This is an example sentence", "Each sentence is converted"]
 
31
 
32
- model = SentenceTransformer('nickprock/sentence-bert-base-italian-xxl-uncased-sts-matryoshka')
33
  embeddings = model.encode(sentences)
34
- print(embeddings)
 
 
 
 
35
  ```
36
 
37
 
@@ -52,7 +61,7 @@ def mean_pooling(model_output, attention_mask):
52
 
53
 
54
  # Sentences we want sentence embeddings for
55
- sentences = ['This is an example sentence', 'Each sentence is converted']
56
 
57
  # Load model from HuggingFace Hub
58
  tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased-sts-matryoshka')
 
1
  ---
 
2
  pipeline_tag: sentence-similarity
3
  tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ license: mit
9
+ datasets:
10
+ - stsb_multi_mt
11
+ language:
12
+ - it
13
+ library_name: sentence-transformers
14
  ---
15
 
16
  # nickprock/sentence-bert-base-italian-xxl-uncased-sts-matryoshka
 
31
 
32
  ```python
33
  from sentence_transformers import SentenceTransformer
34
+ sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
35
+ matryoshka_dim = 64
36
 
37
+ model = SentenceTransformer('nickprock/sentence-bert-base-italian-uncased')
38
  embeddings = model.encode(sentences)
39
+ embeddings = embeddings[..., :matryoshka_dim] # Shrink the embedding dimensions
40
+ print(embeddings.shape)
41
+ # => (2, 64)
42
+
43
+
44
  ```
45
 
46
 
 
61
 
62
 
63
  # Sentences we want sentence embeddings for
64
+ sentences = ["Una ragazza si acconcia i capelli.", "Una ragazza si sta spazzolando i capelli."]
65
 
66
  # Load model from HuggingFace Hub
67
  tokenizer = AutoTokenizer.from_pretrained('nickprock/sentence-bert-base-italian-xxl-uncased-sts-matryoshka')