--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - beans widget: - src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg example_title: Angular Leaf Spot - src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/bean_rust.jpeg example_title: Bean Rust metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9849624060150376 - task: type: image-classification name: Image Classification dataset: name: beans type: beans config: default split: test metrics: - name: Accuracy type: accuracy value: 0.96875 verified: true - name: Precision Macro type: precision value: 0.9716312056737588 verified: true - name: Precision Micro type: precision value: 0.96875 verified: true - name: Precision Weighted type: precision value: 0.9714095744680851 verified: true - name: Recall Macro type: recall value: 0.9689922480620154 verified: true - name: Recall Micro type: recall value: 0.96875 verified: true - name: Recall Weighted type: recall value: 0.96875 verified: true - name: F1 Macro type: f1 value: 0.9689250225835592 verified: true - name: F1 Micro type: f1 value: 0.96875 verified: true - name: F1 Weighted type: f1 value: 0.9686822493224932 verified: true - name: loss type: loss value: 0.1282731592655182 verified: true --- # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0505 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1166 | 1.54 | 100 | 0.0764 | 0.9850 | | 0.1607 | 3.08 | 200 | 0.2114 | 0.9398 | | 0.0067 | 4.62 | 300 | 0.0692 | 0.9774 | | 0.005 | 6.15 | 400 | 0.0944 | 0.9624 | | 0.0043 | 7.69 | 500 | 0.0505 | 0.9850 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0