File size: 6,296 Bytes
7c3cb68 4286753 88472f8 7c3cb68 4286753 7c3cb68 4286753 7c3cb68 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 ce033b1 4286753 7c3cb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
widget:
- src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/healthy.jpeg
example_title: Healthy
- src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg
example_title: Angular Leaf Spot
- src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/bean_rust.jpeg
example_title: Bean Rust
model-index:
- name: vit-base-beans
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: beans
type: beans
args: default
metrics:
- type: accuracy
value: 0.9849624060150376
name: Accuracy
- task:
type: image-classification
name: Image Classification
dataset:
name: beans
type: beans
config: default
split: test
metrics:
- type: accuracy
value: 0.96875
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWUwN2EwMjAxZTBhMjU4NzNiMjdkOGYwOWQwNWIzYzdiMjAwMWIyOWQ3OGI0MmM3NTRlODBiMGM1NzU1NWNmNCIsInZlcnNpb24iOjF9.Smb7uDp0Qs8z47_ycR-ip_GrUXeP-7gpqOsExVr3mLzBshzfUutrHPMQyZRtmo9kTQSoFgO4oirzd3sPDmJzCg
- type: precision
value: 0.9716312056737588
name: Precision Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTBjYWM2NDYzMGUwNzI0NDVmMGJhMjEzYzhlYzQwNWY0MjE1NjMzNTY0YTBkOGQ4ZmM3MzdhNTc5NDdlNzVmNSIsInZlcnNpb24iOjF9.Ts_EkO4sRgKU_Y8WxEZ6Hrf8ivI1DO4nANNW7iNfjzJrK6ZPgU-hc8VO4PXg7EXVwnOiMcgdqxdzKNi0wZgvDg
- type: precision
value: 0.96875
name: Precision Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTMwNGEyODA1NmEzOWE2M2U1M2M0MTg3MTU2NTVmODcxNGY1ZmFiZWIwMDJkZDEzNTRkNmNjOWNjYzllZDhjNyIsInZlcnNpb24iOjF9.yvGN04AqLPpiP4bg42Z0X7IHSqTde3kb8QXeAn79WMub6RTbtQqSsPnLkZmfIBC_bsKdDFGNr4Pq5wtLa0GpBA
- type: precision
value: 0.9714095744680851
name: Precision Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODQ3NzIzMzE1NWQ3ZmQwZmRhNzNmOTczMjllMjM5MDUyYjFmYWQzYjA3YTQzM2I5MmZkNGE5MWI2MWYxYmUxOCIsInZlcnNpb24iOjF9.pLLxdDf4YjD2N5x4G2cTKaBSvmTHDXH2ZDL4QYZ0nHHnRNeQRRpyhny_swBn4ooS2YplGnUfU5WcIDboSmP2Dg
- type: recall
value: 0.9689922480620154
name: Recall Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGUzOGRjYWJlY2FiY2M2Yjg1YmZmZjg3NjU3YjhiZmViZjhjMjgzNGM5MGJjNzA5YzJkZmZmZWFkNjBkODgwZiIsInZlcnNpb24iOjF9.vintwO0TDSUQ279t41zAi7nu_Z330RPgRbictjqBfC-P-EmEp6c2FgFk2Tfi9JU1ADWZp1LSiYVP6Z0vx1tdDg
- type: recall
value: 0.96875
name: Recall Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzU1MDMyZjFjNzkzZGQ1NTFhZDdjNGFkMGFiNDYyMDRhMTI4NjRhMjlkOTBkZDQ5ZGM0NTg0ODBlZDE1MWY3ZCIsInZlcnNpb24iOjF9.jSiGQmIYTp1AF1HXCrcdRPMx1KLTinZePt0_JwPNx4_NBXTSoB8SfMYa37tQUjiWge84mIs9peEGOvlR_D-MDA
- type: recall
value: 0.96875
name: Recall Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWRkMWQ1OWRiMmUyMzIwNTNlYjZkZWI2MmI1ZDE3NGMxNTJiYzk0NzU1ZDgyNWIwY2E1YWIwODY3NjIwNGE2YSIsInZlcnNpb24iOjF9.p_xnLgnHK_rn4P6b5OBMOse9-2I0Bmdg71D8OF-GoSyBtIxY_fqEiZOsxRPliCtj8oaaapmzE5hBuk8Js5fpDw
- type: f1
value: 0.9689250225835592
name: F1 Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDczNmY3NWMxOTRmMzUwZDVjZTNmOTgwNGY3NDIyYmNiMjFjOTBiMTAxYjlmMTYxNjdlODI4NmI5ZjYzNWM5ZCIsInZlcnNpb24iOjF9.NZ573cbob2p6akj5ZwRm9L2eN3wes9_c-m936SG561UWiJBjgt8rluMEmAVV9Dv-ioejNtAy1F4fvg2AdyBwDQ
- type: f1
value: 0.96875
name: F1 Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTZlNzNhZjRkYWE1ZDRiZmVhYjc3ZTZhYmYzMDVkMmIzMzUzNWY1NDliMGI5NzgxZjM1YzliNWZhYzM4MzA5MyIsInZlcnNpb24iOjF9.ClwhPdxnwkUHQt22byICE0f31CaIrXr1dhNDMvEt8imyzf13saNURRzvk3pW-eOCpZaGY3LCjvgAwrdXtZ67AA
- type: f1
value: 0.9686822493224932
name: F1 Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2RiZGMyNmQ5NWQyODgzMjgwY2E2Y2E5MmJmOTIxMWQ1ZGJmYjNhNGRjOWM4NTRjZTBkMTU3MGU4MzBmMWU0OCIsInZlcnNpb24iOjF9.EQX3LU8GL2TRZxWaDHmKWEkXOLpF0cVWn0pQUrBE43rDe0-Peon_wnIhlE1qijPAEO75fPTWtr5MpjnaXAWqAA
- type: loss
value: 0.1282731592655182
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzFjMjkwYzk0NDA4OGZkYjQzY2M1YTczOTExNDFiNjVmYjBmZmMwYjk4MDI0MDdmYmM0N2MyZmNlOGQ5OTQ0NCIsInZlcnNpb24iOjF9.Rzg0eUxeNkN_bqFU1OmIuw-cc1doy1DHbQus-0fypVxsb1tKKUVBWwMSx-lVYxFKU9PP8twxNlM6fu3Xro_hDA
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0505
- Accuracy: 0.9850
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1166 | 1.54 | 100 | 0.0764 | 0.9850 |
| 0.1607 | 3.08 | 200 | 0.2114 | 0.9398 |
| 0.0067 | 4.62 | 300 | 0.0692 | 0.9774 |
| 0.005 | 6.15 | 400 | 0.0944 | 0.9624 |
| 0.0043 | 7.69 | 500 | 0.0505 | 0.9850 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|