File size: 3,436 Bytes
7c3cb68 88472f8 7c3cb68 e9fa390 7c3cb68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- beans
widget:
- src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/healthy.jpeg
example_title: Healthy
- src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/angular_leaf_spot.jpeg
example_title: Angular Leaf Spot
- src: https://huggingface.co./nateraw/vit-base-beans/resolve/main/bean_rust.jpeg
example_title: Bean Rust
metrics:
- accuracy
model-index:
- name: vit-base-beans
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9849624060150376
- task:
type: image-classification
name: Image Classification
dataset:
name: beans
type: beans
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.96875
verified: true
- name: Precision Macro
type: precision
value: 0.9716312056737588
verified: true
- name: Precision Micro
type: precision
value: 0.96875
verified: true
- name: Precision Weighted
type: precision
value: 0.9714095744680851
verified: true
- name: Recall Macro
type: recall
value: 0.9689922480620154
verified: true
- name: Recall Micro
type: recall
value: 0.96875
verified: true
- name: Recall Weighted
type: recall
value: 0.96875
verified: true
- name: F1 Macro
type: f1
value: 0.9689250225835592
verified: true
- name: F1 Micro
type: f1
value: 0.96875
verified: true
- name: F1 Weighted
type: f1
value: 0.9686822493224932
verified: true
- name: loss
type: loss
value: 0.1282731592655182
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-beans
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0505
- Accuracy: 0.9850
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1166 | 1.54 | 100 | 0.0764 | 0.9850 |
| 0.1607 | 3.08 | 200 | 0.2114 | 0.9398 |
| 0.0067 | 4.62 | 300 | 0.0692 | 0.9774 |
| 0.005 | 6.15 | 400 | 0.0944 | 0.9624 |
| 0.0043 | 7.69 | 500 | 0.0505 | 0.9850 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|