--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-base-finetuned-finance-text-classification results: [] --- # deberta-v3-base-finetuned-finance-text-classification This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co./microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7687 - Accuracy: 0.8913 - F1: 0.8912 - Precision: 0.8927 - Recall: 0.8913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 285 | 0.4187 | 0.8399 | 0.8407 | 0.8687 | 0.8399 | | 0.5002 | 2.0 | 570 | 0.3065 | 0.8755 | 0.8733 | 0.8781 | 0.8755 | | 0.5002 | 3.0 | 855 | 0.4148 | 0.8775 | 0.8775 | 0.8778 | 0.8775 | | 0.1937 | 4.0 | 1140 | 0.4249 | 0.8696 | 0.8699 | 0.8719 | 0.8696 | | 0.1937 | 5.0 | 1425 | 0.5121 | 0.8834 | 0.8824 | 0.8831 | 0.8834 | | 0.0917 | 6.0 | 1710 | 0.6113 | 0.8775 | 0.8779 | 0.8839 | 0.8775 | | 0.0917 | 7.0 | 1995 | 0.7296 | 0.8775 | 0.8776 | 0.8793 | 0.8775 | | 0.0473 | 8.0 | 2280 | 0.7034 | 0.8953 | 0.8942 | 0.8964 | 0.8953 | | 0.0275 | 9.0 | 2565 | 0.6995 | 0.8834 | 0.8836 | 0.8846 | 0.8834 | | 0.0275 | 10.0 | 2850 | 0.7736 | 0.8755 | 0.8755 | 0.8789 | 0.8755 | | 0.0186 | 11.0 | 3135 | 0.7173 | 0.8814 | 0.8814 | 0.8840 | 0.8814 | | 0.0186 | 12.0 | 3420 | 0.7659 | 0.8854 | 0.8852 | 0.8873 | 0.8854 | | 0.0113 | 13.0 | 3705 | 0.8415 | 0.8854 | 0.8855 | 0.8907 | 0.8854 | | 0.0113 | 14.0 | 3990 | 0.7577 | 0.8953 | 0.8951 | 0.8966 | 0.8953 | | 0.0074 | 15.0 | 4275 | 0.7687 | 0.8913 | 0.8912 | 0.8927 | 0.8913 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1