nickmuchi commited on
Commit
2a0feb0
1 Parent(s): 0afdaa6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: deberta-v3-base-finetuned-finance-text-classification
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # deberta-v3-base-finetuned-finance-text-classification
19
+
20
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7687
23
+ - Accuracy: 0.8913
24
+ - F1: 0.8912
25
+ - Precision: 0.8927
26
+ - Recall: 0.8913
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | No log | 1.0 | 285 | 0.4187 | 0.8399 | 0.8407 | 0.8687 | 0.8399 |
59
+ | 0.5002 | 2.0 | 570 | 0.3065 | 0.8755 | 0.8733 | 0.8781 | 0.8755 |
60
+ | 0.5002 | 3.0 | 855 | 0.4148 | 0.8775 | 0.8775 | 0.8778 | 0.8775 |
61
+ | 0.1937 | 4.0 | 1140 | 0.4249 | 0.8696 | 0.8699 | 0.8719 | 0.8696 |
62
+ | 0.1937 | 5.0 | 1425 | 0.5121 | 0.8834 | 0.8824 | 0.8831 | 0.8834 |
63
+ | 0.0917 | 6.0 | 1710 | 0.6113 | 0.8775 | 0.8779 | 0.8839 | 0.8775 |
64
+ | 0.0917 | 7.0 | 1995 | 0.7296 | 0.8775 | 0.8776 | 0.8793 | 0.8775 |
65
+ | 0.0473 | 8.0 | 2280 | 0.7034 | 0.8953 | 0.8942 | 0.8964 | 0.8953 |
66
+ | 0.0275 | 9.0 | 2565 | 0.6995 | 0.8834 | 0.8836 | 0.8846 | 0.8834 |
67
+ | 0.0275 | 10.0 | 2850 | 0.7736 | 0.8755 | 0.8755 | 0.8789 | 0.8755 |
68
+ | 0.0186 | 11.0 | 3135 | 0.7173 | 0.8814 | 0.8814 | 0.8840 | 0.8814 |
69
+ | 0.0186 | 12.0 | 3420 | 0.7659 | 0.8854 | 0.8852 | 0.8873 | 0.8854 |
70
+ | 0.0113 | 13.0 | 3705 | 0.8415 | 0.8854 | 0.8855 | 0.8907 | 0.8854 |
71
+ | 0.0113 | 14.0 | 3990 | 0.7577 | 0.8953 | 0.8951 | 0.8966 | 0.8953 |
72
+ | 0.0074 | 15.0 | 4275 | 0.7687 | 0.8913 | 0.8912 | 0.8927 | 0.8913 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.19.2
78
+ - Pytorch 1.11.0+cu113
79
+ - Datasets 2.2.2
80
+ - Tokenizers 0.12.1