nguyenvulebinh commited on
Commit
544c074
·
verified ·
1 Parent(s): fc002a9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +156 -194
README.md CHANGED
@@ -3,197 +3,159 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Huggingface Implementation of AV-HuBERT on the MuAViC Dataset
7
+
8
+ This repository contains a Huggingface implementation of the AV-HuBERT (Audio-Visual Hidden Unit BERT) model, specifically trained and tested on the MuAViC (Multilingual Audio-Visual Corpus) dataset. AV-HuBERT is a self-supervised model designed for audio-visual speech recognition, leveraging both audio and visual modalities to achieve robust performance, especially in noisy environments.
9
+
10
+
11
+ Key features of this repository include:
12
+
13
+ - Pre-trained Models: Access pre-trained AV-HuBERT models fine-tuned on the MuAViC dataset. The pre-trained model been exported from [MuAViC](https://github.com/facebookresearch/muavic) repository.
14
+
15
+ - Inference scripts: Easily pipelines using Huggingface’s interface.
16
+
17
+ - Data preprocessing scripts: Including normalize frame rate, extract lips and audio.
18
+
19
+ ### Inference code
20
+
21
+ ```sh
22
+ git clone https://github.com/nguyenvulebinh/AV-HuBERT-S2S.git
23
+ cd AV-HuBERT-S2S
24
+ conda create -n avhuberts2s python=3.9
25
+ conda activate avhuberts2s
26
+ pip install -r requirements.txt
27
+ python run_example.py
28
+ ```
29
+
30
+ ```python
31
+ from src.model.avhubert2text import AV2TextForConditionalGeneration
32
+ from src.dataset.load_data import load_feature
33
+ from transformers import Speech2TextTokenizer
34
+ import torch
35
+
36
+ if __name__ == "__main__":
37
+ # Choose language to run example
38
+ AVAILABEL_LANGUAGES = ["ar", "de", "el", "en", "es", "fr", "it", "pt", "ru", "multilingual"]
39
+ language = "ru"
40
+ assert language in AVAILABEL_LANGUAGES, f"Language {language} is not available, please choose one of {AVAILABEL_LANGUAGES}"
41
+
42
+
43
+ # Load model and tokenizer
44
+ model_name_or_path = f"nguyenvulebinh/AV-HuBERT-MuAViC-{language}"
45
+ model = AV2TextForConditionalGeneration.from_pretrained(model_name_or_path, cache_dir='./model-bin')
46
+ tokenizer = Speech2TextTokenizer.from_pretrained(model_name_or_path, cache_dir='./model-bin')
47
+
48
+ model = model.cuda().eval()
49
+
50
+ # Load example video and audio
51
+ video_example = f"./example/video_processed/{language}_lip_movement.mp4"
52
+ audio_example = f"./example/video_processed/{language}_audio.wav"
53
+ if not os.path.exists(video_example) or not os.path.exists(audio_example):
54
+ print(f"WARNING: Example video and audio for {language} is not available english will be used instead")
55
+ video_example = f"./example/video_processed/en_lip_movement.mp4"
56
+ audio_example = f"./example/video_processed/en_audio.wav"
57
+
58
+ # Load and process example
59
+ sample = load_feature(
60
+ video_example,
61
+ audio_example
62
+ )
63
+
64
+ audio_feats = sample['audio_source'].cuda()
65
+ video_feats = sample['video_source'].cuda()
66
+ attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
67
+
68
+ # Generate text
69
+ output = model.generate(
70
+ audio_feats,
71
+ attention_mask=attention_mask,
72
+ video=video_feats,
73
+ max_length=1024,
74
+ )
75
+
76
+ print(tokenizer.batch_decode(output, skip_special_tokens=True))
77
+ ```
78
+
79
+ ### Data preprocessing scripts
80
+
81
+ ```sh
82
+ mkdir model-bin
83
+ cd model-bin
84
+ wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/20words_mean_face.npy .
85
+ wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/shape_predictor_68_face_landmarks.dat .
86
+
87
+ # raw video only support 4:3 ratio now
88
+ cp raw_video.mp4 ./example/
89
+
90
+ python src/dataset/video_to_audio_lips.py
91
+ ```
92
+
93
+ ### Pretrained AVSR model
94
+
95
+ <table align="center">
96
+ <tr>
97
+ <th>Languages</th>
98
+ <th>Huggingface</th>
99
+ </tr>
100
+ <tr>
101
+ <th>Arabic</th>
102
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-ar">Checkpoint-AR</a></th>
103
+ </tr>
104
+ <tr>
105
+ <th>German</th>
106
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-de">Checkpoint-DE</a></th>
107
+ </tr>
108
+ <tr>
109
+ <th>Greek</th>
110
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-el">Checkpoint-EL</a></th>
111
+ </tr>
112
+ <tr>
113
+ <th>English</th>
114
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-en">Checkpoint-EN</a></th>
115
+ </tr>
116
+ <tr>
117
+ <th>Spanish</th>
118
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-es">Checkpoint-ES</a></th>
119
+ </tr>
120
+ <tr>
121
+ <th>French</th>
122
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-fr">Checkpoint-FR</a></th>
123
+ </tr>
124
+ <tr>
125
+ <th>Italian</th>
126
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-it">Checkpoint-IT</a></th>
127
+ </tr>
128
+ <tr>
129
+ <th>Portuguese</th>
130
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-pt">Checkpoint-PT</a></th>
131
+ </tr>
132
+ <tr>
133
+ <th>Russian</th>
134
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-ru">Checkpoint-RU</a></th>
135
+ </tr>
136
+ <tr>
137
+ <th>Multilingual</th>
138
+ <th><a href="https://huggingface.co/nguyenvulebinh/AV-HuBERT-MuAViC-multilingual">Checkpoint-ar_de_el_es_fr_it_pt_ru</a></th>
139
+ </tr>
140
+ </table>
141
+
142
+ ## Acknowledgments
143
+
144
+ **AV-HuBERT**: A significant portion of the codebase in this repository has been adapted from the original AV-HuBERT implementation.
145
+
146
+ **MuAViC Repository**: We also gratefully acknowledge the creators of the MuAViC dataset and repository for providing the pre-trained models used in this project
147
+
148
+ ## License
149
+
150
+ CC-BY-NC 4.0
151
+
152
+ ## Citation
153
+
154
+ ```bibtex
155
+ @article{anwar2023muavic,
156
+ title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
157
+ author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
158
+ journal={arXiv preprint arXiv:2303.00628},
159
+ year={2023}
160
+ }
161
+ ```