File size: 4,708 Bytes
5b7443a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
base_model: deepseek-ai/deepseek-math-7b-rl
library_name: peft
license: other
tags:
- generated_from_trainer
model-index:
- name: workspace/axolotl/vinh/deepseek-ai_deepseek-math-7b-rl-lora-2024-07-01-15-56-34
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: deepseek-ai/deepseek-math-7b-rl
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false
 
datasets:
  - path: /workspace/axolotl/vinh/PAL/input_output_dsmath.json
    type: input_output
dataset_prepared_path:
val_set_size: 0.05
eval_sample_packing: false
output_dir: /workspace/axolotl/vinh/deepseek-ai_deepseek-math-7b-rl-lora-2024-07-01-15-56-34

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false

adapter: lora
lora_model_dir: 
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 128
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-4

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: 
flash_attention: true
s2_attention:

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 512
saves_per_epoch: 2
save_total_limit: 20
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end▁of▁sentence|>

```

</details><br>

# workspace/axolotl/vinh/deepseek-ai_deepseek-math-7b-rl-lora-2024-07-01-15-56-34

This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-rl](https://huggingface.co./deepseek-ai/deepseek-math-7b-rl) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0276

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 128
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4197        | 0.0095 | 1    | 0.4128          |
| 0.0885        | 0.1043 | 11   | 0.0781          |
| 0.0482        | 0.2086 | 22   | 0.0517          |
| 0.045         | 0.3129 | 33   | 0.0429          |
| 0.0425        | 0.4172 | 44   | 0.0400          |
| 0.0411        | 0.5214 | 55   | 0.0379          |
| 0.0348        | 0.6257 | 66   | 0.0359          |
| 0.0288        | 0.7300 | 77   | 0.0342          |
| 0.0339        | 0.8343 | 88   | 0.0331          |
| 0.0297        | 0.9386 | 99   | 0.0318          |
| 0.0281        | 1.0429 | 110  | 0.0312          |
| 0.027         | 1.1472 | 121  | 0.0303          |
| 0.023         | 1.2515 | 132  | 0.0298          |
| 0.0259        | 1.3558 | 143  | 0.0297          |
| 0.0232        | 1.4600 | 154  | 0.0300          |
| 0.0203        | 1.5643 | 165  | 0.0291          |
| 0.0241        | 1.6686 | 176  | 0.0284          |
| 0.0245        | 1.7729 | 187  | 0.0282          |
| 0.0222        | 1.8772 | 198  | 0.0277          |
| 0.0231        | 1.9815 | 209  | 0.0278          |
| 0.0175        | 2.0858 | 220  | 0.0276          |
| 0.0165        | 2.1901 | 231  | 0.0281          |
| 0.0174        | 2.2943 | 242  | 0.0281          |
| 0.021         | 2.3986 | 253  | 0.0279          |
| 0.0147        | 2.5029 | 264  | 0.0277          |
| 0.0162        | 2.6072 | 275  | 0.0277          |
| 0.0206        | 2.7115 | 286  | 0.0276          |
| 0.0241        | 2.8158 | 297  | 0.0276          |
| 0.0162        | 2.9201 | 308  | 0.0276          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1