--- base_model: NousResearch/Meta-Llama-3-8B-Instruct library_name: peft license: other tags: - generated_from_trainer model-index: - name: workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-06-29-17-22-10 results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: NousResearch/Meta-Llama-3-8B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: /workspace/axolotl/vinh/PAL/input_output_llama3.json type: input_output - path: /workspace/axolotl/vinh/INSTRUCT/input_output_llama3.json type: input_output dataset_prepared_path: val_set_size: 0.05 eval_sample_packing: false output_dir: /workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-06-29-17-22-10 sequence_len: 2048 sample_packing: false pad_to_sequence_len: false adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 128 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 10 eval_table_size: eval_max_new_tokens: 512 saves_per_epoch: 2 save_total_limit: 20 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# workspace/axolotl/vinh/NousResearch_Meta-Llama-3-8B-Instruct-lora-2024-06-29-17-22-10 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co./NousResearch/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6579 | 0.0063 | 1 | 0.6361 | | 0.1746 | 0.1011 | 16 | 0.1862 | | 0.1495 | 0.2023 | 32 | 0.1577 | | 0.1288 | 0.3034 | 48 | 0.1459 | | 0.1508 | 0.4045 | 64 | 0.1368 | | 0.1309 | 0.5056 | 80 | 0.1310 | | 0.1179 | 0.6068 | 96 | 0.1283 | | 0.1035 | 0.7079 | 112 | 0.1236 | | 0.1117 | 0.8090 | 128 | 0.1208 | | 0.1126 | 0.9101 | 144 | 0.1188 | | 0.0739 | 1.0113 | 160 | 0.1146 | | 0.0741 | 1.1124 | 176 | 0.1134 | | 0.0746 | 1.2135 | 192 | 0.1137 | | 0.0821 | 1.3146 | 208 | 0.1125 | | 0.0768 | 1.4158 | 224 | 0.1091 | | 0.0627 | 1.5169 | 240 | 0.1069 | | 0.0746 | 1.6180 | 256 | 0.1056 | | 0.0767 | 1.7191 | 272 | 0.1031 | | 0.0775 | 1.8203 | 288 | 0.0996 | | 0.0596 | 1.9214 | 304 | 0.0987 | | 0.0463 | 2.0225 | 320 | 0.0976 | | 0.036 | 2.1236 | 336 | 0.1062 | | 0.0401 | 2.2248 | 352 | 0.1029 | | 0.0462 | 2.3259 | 368 | 0.1039 | | 0.0476 | 2.4270 | 384 | 0.1034 | | 0.0372 | 2.5281 | 400 | 0.1026 | | 0.0377 | 2.6293 | 416 | 0.1026 | | 0.0358 | 2.7304 | 432 | 0.1026 | | 0.0392 | 2.8315 | 448 | 0.1027 | | 0.0384 | 2.9326 | 464 | 0.1026 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1