--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer datasets: - boolq metrics: - accuracy model-index: - name: deberta-v3-large_boolq results: - task: name: Text Classification type: text-classification dataset: name: boolq type: boolq config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8834862385321101 --- # deberta-v3-large_boolq This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the boolq dataset. It achieves the following results on the evaluation set: - Loss: 0.4601 - Accuracy: 0.8835 ## Model description More information needed ## Example ``` import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("nfliu/deberta-v3-large_boolq") tokenizer = AutoTokenizer.from_pretrained("nfliu/deberta-v3-large_boolq") # Each example is a (question, context) pair. examples = [ ("Lake Tahoe is in California", "Lake Tahoe is a popular tourist spot in California."), ("Water is wet", "Contrary to popular belief, water is not wet.") ] encoded_input = tokenizer(examples, padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): model_output = model(**encoded_input) probabilities = torch.softmax(model_output.logits, dim=-1).cpu().tolist() probability_no = [round(prob[0], 2) for prob in probabilities] probability_yes = [round(prob[1], 2) for prob in probabilities] for example, p_no, p_yes in zip(examples, probability_no, probability_yes): print(f"Question: {example[0]}") print(f"Context: {example[1]}") print(f"p(No | question, context): {p_no}") print(f"p(Yes | question, context): {p_yes}") print() ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.85 | 250 | 0.5306 | 0.8823 | | 0.1151 | 1.69 | 500 | 0.4601 | 0.8835 | | 0.1151 | 2.54 | 750 | 0.5897 | 0.8792 | | 0.0656 | 3.39 | 1000 | 0.6477 | 0.8804 | | 0.0656 | 4.24 | 1250 | 0.6847 | 0.8838 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3