--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer datasets: - boolq metrics: - accuracy model-index: - name: deberta-v3-large_boolq results: - task: name: Text Classification type: text-classification dataset: name: boolq type: boolq config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.882262996941896 --- # deberta-v3-large_boolq This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the boolq dataset. It achieves the following results on the evaluation set: - Loss: 0.5796 - Accuracy: 0.8823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.85 | 250 | 0.3265 | 0.8740 | | 0.3786 | 1.69 | 500 | 0.3212 | 0.8844 | | 0.3786 | 2.54 | 750 | 0.4205 | 0.8838 | | 0.1324 | 3.39 | 1000 | 0.5393 | 0.8832 | | 0.1324 | 4.24 | 1250 | 0.5796 | 0.8823 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3