--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - fblgit/UNA-TheBeagle-7b-v1 - udkai/Turdus --- # Marcoroni-7b-DPO-Merge Marcoroni-7b-DPO-Merge is a merge of the following models using [mergekit](https://github.com/cg123/mergekit) and inspired by [Maxime Labonne's work](https://medium.com/@mlabonne): * [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co./fblgit/UNA-TheBeagle-7b-v1) * [udkai/Turdus](https://huggingface.co./udkai/Turdus) ## 🧩 Configuration ```yaml models: - model: madatnlp/marcoroni-7b-v3-safetensor # no parameters necessary for base model - model: fblgit/UNA-TheBeagle-7b-v1 parameters: density: 0.3 weight: 0.5 - model: udkai/Turdus parameters: density: 0.7 weight: 0.3 merge_method: ties base_model: madatnlp/marcoroni-7b-v3-safetensor parameters: normalize: true dtype: float16 ``` ## 💻 Example Python Code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "nfaheem/Marcoroni-7b-DPO-Merge" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Write a story about llamas" system_message = "You are a story writing assistant" prompt_template=f'''{prompt} ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text'])