--- base_model: Intel/neural-chat-7b-v3-3 license: apache-2.0 tags: - LLMs - mistral - math - Intel - llama-cpp - gguf-my-repo model-index: - name: neural-chat-7b-v3-3 results: - task: type: Large Language Model name: Large Language Model dataset: name: meta-math/MetaMathQA type: meta-math/MetaMathQA metrics: - type: ARC (25-shot) value: 66.89 name: ARC (25-shot) verified: true - type: HellaSwag (10-shot) value: 85.26 name: HellaSwag (10-shot) verified: true - type: MMLU (5-shot) value: 63.07 name: MMLU (5-shot) verified: true - type: TruthfulQA (0-shot) value: 63.01 name: TruthfulQA (0-shot) verified: true - type: Winogrande (5-shot) value: 79.64 name: Winogrande (5-shot) verified: true - type: GSM8K (5-shot) value: 61.11 name: GSM8K (5-shot) verified: true - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.89 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.26 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.07 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.01 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.64 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.11 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Intel/neural-chat-7b-v3-3 name: Open LLM Leaderboard --- # newsletter/neural-chat-7b-v3-3-Q6_K-GGUF This model was converted to GGUF format from [`Intel/neural-chat-7b-v3-3`](https://huggingface.co./Intel/neural-chat-7b-v3-3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co./Intel/neural-chat-7b-v3-3) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo newsletter/neural-chat-7b-v3-3-Q6_K-GGUF --hf-file neural-chat-7b-v3-3-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo newsletter/neural-chat-7b-v3-3-Q6_K-GGUF --hf-file neural-chat-7b-v3-3-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo newsletter/neural-chat-7b-v3-3-Q6_K-GGUF --hf-file neural-chat-7b-v3-3-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo newsletter/neural-chat-7b-v3-3-Q6_K-GGUF --hf-file neural-chat-7b-v3-3-q6_k.gguf -c 2048 ```