Delete infer_pack
Browse files- infer_pack/__pycache__/attentions.cpython-39.pyc +0 -0
- infer_pack/__pycache__/commons.cpython-39.pyc +0 -0
- infer_pack/__pycache__/models.cpython-39.pyc +0 -0
- infer_pack/__pycache__/modules.cpython-39.pyc +0 -0
- infer_pack/__pycache__/transforms.cpython-39.pyc +0 -0
- infer_pack/attentions.py +0 -417
- infer_pack/commons.py +0 -164
- infer_pack/models.py +0 -664
- infer_pack/modules.py +0 -522
- infer_pack/transforms.py +0 -193
infer_pack/__pycache__/attentions.cpython-39.pyc
DELETED
Binary file (9.92 kB)
|
|
infer_pack/__pycache__/commons.cpython-39.pyc
DELETED
Binary file (5.88 kB)
|
|
infer_pack/__pycache__/models.cpython-39.pyc
DELETED
Binary file (16.7 kB)
|
|
infer_pack/__pycache__/modules.cpython-39.pyc
DELETED
Binary file (11.9 kB)
|
|
infer_pack/__pycache__/transforms.cpython-39.pyc
DELETED
Binary file (3.92 kB)
|
|
infer_pack/attentions.py
DELETED
@@ -1,417 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
from infer_pack import commons
|
9 |
-
from infer_pack import modules
|
10 |
-
from infer_pack.modules import LayerNorm
|
11 |
-
|
12 |
-
|
13 |
-
class Encoder(nn.Module):
|
14 |
-
def __init__(
|
15 |
-
self,
|
16 |
-
hidden_channels,
|
17 |
-
filter_channels,
|
18 |
-
n_heads,
|
19 |
-
n_layers,
|
20 |
-
kernel_size=1,
|
21 |
-
p_dropout=0.0,
|
22 |
-
window_size=10,
|
23 |
-
**kwargs
|
24 |
-
):
|
25 |
-
super().__init__()
|
26 |
-
self.hidden_channels = hidden_channels
|
27 |
-
self.filter_channels = filter_channels
|
28 |
-
self.n_heads = n_heads
|
29 |
-
self.n_layers = n_layers
|
30 |
-
self.kernel_size = kernel_size
|
31 |
-
self.p_dropout = p_dropout
|
32 |
-
self.window_size = window_size
|
33 |
-
|
34 |
-
self.drop = nn.Dropout(p_dropout)
|
35 |
-
self.attn_layers = nn.ModuleList()
|
36 |
-
self.norm_layers_1 = nn.ModuleList()
|
37 |
-
self.ffn_layers = nn.ModuleList()
|
38 |
-
self.norm_layers_2 = nn.ModuleList()
|
39 |
-
for i in range(self.n_layers):
|
40 |
-
self.attn_layers.append(
|
41 |
-
MultiHeadAttention(
|
42 |
-
hidden_channels,
|
43 |
-
hidden_channels,
|
44 |
-
n_heads,
|
45 |
-
p_dropout=p_dropout,
|
46 |
-
window_size=window_size,
|
47 |
-
)
|
48 |
-
)
|
49 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
50 |
-
self.ffn_layers.append(
|
51 |
-
FFN(
|
52 |
-
hidden_channels,
|
53 |
-
hidden_channels,
|
54 |
-
filter_channels,
|
55 |
-
kernel_size,
|
56 |
-
p_dropout=p_dropout,
|
57 |
-
)
|
58 |
-
)
|
59 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
60 |
-
|
61 |
-
def forward(self, x, x_mask):
|
62 |
-
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
63 |
-
x = x * x_mask
|
64 |
-
for i in range(self.n_layers):
|
65 |
-
y = self.attn_layers[i](x, x, attn_mask)
|
66 |
-
y = self.drop(y)
|
67 |
-
x = self.norm_layers_1[i](x + y)
|
68 |
-
|
69 |
-
y = self.ffn_layers[i](x, x_mask)
|
70 |
-
y = self.drop(y)
|
71 |
-
x = self.norm_layers_2[i](x + y)
|
72 |
-
x = x * x_mask
|
73 |
-
return x
|
74 |
-
|
75 |
-
|
76 |
-
class Decoder(nn.Module):
|
77 |
-
def __init__(
|
78 |
-
self,
|
79 |
-
hidden_channels,
|
80 |
-
filter_channels,
|
81 |
-
n_heads,
|
82 |
-
n_layers,
|
83 |
-
kernel_size=1,
|
84 |
-
p_dropout=0.0,
|
85 |
-
proximal_bias=False,
|
86 |
-
proximal_init=True,
|
87 |
-
**kwargs
|
88 |
-
):
|
89 |
-
super().__init__()
|
90 |
-
self.hidden_channels = hidden_channels
|
91 |
-
self.filter_channels = filter_channels
|
92 |
-
self.n_heads = n_heads
|
93 |
-
self.n_layers = n_layers
|
94 |
-
self.kernel_size = kernel_size
|
95 |
-
self.p_dropout = p_dropout
|
96 |
-
self.proximal_bias = proximal_bias
|
97 |
-
self.proximal_init = proximal_init
|
98 |
-
|
99 |
-
self.drop = nn.Dropout(p_dropout)
|
100 |
-
self.self_attn_layers = nn.ModuleList()
|
101 |
-
self.norm_layers_0 = nn.ModuleList()
|
102 |
-
self.encdec_attn_layers = nn.ModuleList()
|
103 |
-
self.norm_layers_1 = nn.ModuleList()
|
104 |
-
self.ffn_layers = nn.ModuleList()
|
105 |
-
self.norm_layers_2 = nn.ModuleList()
|
106 |
-
for i in range(self.n_layers):
|
107 |
-
self.self_attn_layers.append(
|
108 |
-
MultiHeadAttention(
|
109 |
-
hidden_channels,
|
110 |
-
hidden_channels,
|
111 |
-
n_heads,
|
112 |
-
p_dropout=p_dropout,
|
113 |
-
proximal_bias=proximal_bias,
|
114 |
-
proximal_init=proximal_init,
|
115 |
-
)
|
116 |
-
)
|
117 |
-
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
-
self.encdec_attn_layers.append(
|
119 |
-
MultiHeadAttention(
|
120 |
-
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
121 |
-
)
|
122 |
-
)
|
123 |
-
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
124 |
-
self.ffn_layers.append(
|
125 |
-
FFN(
|
126 |
-
hidden_channels,
|
127 |
-
hidden_channels,
|
128 |
-
filter_channels,
|
129 |
-
kernel_size,
|
130 |
-
p_dropout=p_dropout,
|
131 |
-
causal=True,
|
132 |
-
)
|
133 |
-
)
|
134 |
-
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
135 |
-
|
136 |
-
def forward(self, x, x_mask, h, h_mask):
|
137 |
-
"""
|
138 |
-
x: decoder input
|
139 |
-
h: encoder output
|
140 |
-
"""
|
141 |
-
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
142 |
-
device=x.device, dtype=x.dtype
|
143 |
-
)
|
144 |
-
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
145 |
-
x = x * x_mask
|
146 |
-
for i in range(self.n_layers):
|
147 |
-
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
148 |
-
y = self.drop(y)
|
149 |
-
x = self.norm_layers_0[i](x + y)
|
150 |
-
|
151 |
-
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
152 |
-
y = self.drop(y)
|
153 |
-
x = self.norm_layers_1[i](x + y)
|
154 |
-
|
155 |
-
y = self.ffn_layers[i](x, x_mask)
|
156 |
-
y = self.drop(y)
|
157 |
-
x = self.norm_layers_2[i](x + y)
|
158 |
-
x = x * x_mask
|
159 |
-
return x
|
160 |
-
|
161 |
-
|
162 |
-
class MultiHeadAttention(nn.Module):
|
163 |
-
def __init__(
|
164 |
-
self,
|
165 |
-
channels,
|
166 |
-
out_channels,
|
167 |
-
n_heads,
|
168 |
-
p_dropout=0.0,
|
169 |
-
window_size=None,
|
170 |
-
heads_share=True,
|
171 |
-
block_length=None,
|
172 |
-
proximal_bias=False,
|
173 |
-
proximal_init=False,
|
174 |
-
):
|
175 |
-
super().__init__()
|
176 |
-
assert channels % n_heads == 0
|
177 |
-
|
178 |
-
self.channels = channels
|
179 |
-
self.out_channels = out_channels
|
180 |
-
self.n_heads = n_heads
|
181 |
-
self.p_dropout = p_dropout
|
182 |
-
self.window_size = window_size
|
183 |
-
self.heads_share = heads_share
|
184 |
-
self.block_length = block_length
|
185 |
-
self.proximal_bias = proximal_bias
|
186 |
-
self.proximal_init = proximal_init
|
187 |
-
self.attn = None
|
188 |
-
|
189 |
-
self.k_channels = channels // n_heads
|
190 |
-
self.conv_q = nn.Conv1d(channels, channels, 1)
|
191 |
-
self.conv_k = nn.Conv1d(channels, channels, 1)
|
192 |
-
self.conv_v = nn.Conv1d(channels, channels, 1)
|
193 |
-
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
194 |
-
self.drop = nn.Dropout(p_dropout)
|
195 |
-
|
196 |
-
if window_size is not None:
|
197 |
-
n_heads_rel = 1 if heads_share else n_heads
|
198 |
-
rel_stddev = self.k_channels**-0.5
|
199 |
-
self.emb_rel_k = nn.Parameter(
|
200 |
-
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
201 |
-
* rel_stddev
|
202 |
-
)
|
203 |
-
self.emb_rel_v = nn.Parameter(
|
204 |
-
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
-
* rel_stddev
|
206 |
-
)
|
207 |
-
|
208 |
-
nn.init.xavier_uniform_(self.conv_q.weight)
|
209 |
-
nn.init.xavier_uniform_(self.conv_k.weight)
|
210 |
-
nn.init.xavier_uniform_(self.conv_v.weight)
|
211 |
-
if proximal_init:
|
212 |
-
with torch.no_grad():
|
213 |
-
self.conv_k.weight.copy_(self.conv_q.weight)
|
214 |
-
self.conv_k.bias.copy_(self.conv_q.bias)
|
215 |
-
|
216 |
-
def forward(self, x, c, attn_mask=None):
|
217 |
-
q = self.conv_q(x)
|
218 |
-
k = self.conv_k(c)
|
219 |
-
v = self.conv_v(c)
|
220 |
-
|
221 |
-
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
222 |
-
|
223 |
-
x = self.conv_o(x)
|
224 |
-
return x
|
225 |
-
|
226 |
-
def attention(self, query, key, value, mask=None):
|
227 |
-
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
228 |
-
b, d, t_s, t_t = (*key.size(), query.size(2))
|
229 |
-
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
230 |
-
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
231 |
-
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
232 |
-
|
233 |
-
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
234 |
-
if self.window_size is not None:
|
235 |
-
assert (
|
236 |
-
t_s == t_t
|
237 |
-
), "Relative attention is only available for self-attention."
|
238 |
-
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
239 |
-
rel_logits = self._matmul_with_relative_keys(
|
240 |
-
query / math.sqrt(self.k_channels), key_relative_embeddings
|
241 |
-
)
|
242 |
-
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
243 |
-
scores = scores + scores_local
|
244 |
-
if self.proximal_bias:
|
245 |
-
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
246 |
-
scores = scores + self._attention_bias_proximal(t_s).to(
|
247 |
-
device=scores.device, dtype=scores.dtype
|
248 |
-
)
|
249 |
-
if mask is not None:
|
250 |
-
scores = scores.masked_fill(mask == 0, -1e4)
|
251 |
-
if self.block_length is not None:
|
252 |
-
assert (
|
253 |
-
t_s == t_t
|
254 |
-
), "Local attention is only available for self-attention."
|
255 |
-
block_mask = (
|
256 |
-
torch.ones_like(scores)
|
257 |
-
.triu(-self.block_length)
|
258 |
-
.tril(self.block_length)
|
259 |
-
)
|
260 |
-
scores = scores.masked_fill(block_mask == 0, -1e4)
|
261 |
-
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
262 |
-
p_attn = self.drop(p_attn)
|
263 |
-
output = torch.matmul(p_attn, value)
|
264 |
-
if self.window_size is not None:
|
265 |
-
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
266 |
-
value_relative_embeddings = self._get_relative_embeddings(
|
267 |
-
self.emb_rel_v, t_s
|
268 |
-
)
|
269 |
-
output = output + self._matmul_with_relative_values(
|
270 |
-
relative_weights, value_relative_embeddings
|
271 |
-
)
|
272 |
-
output = (
|
273 |
-
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
274 |
-
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
275 |
-
return output, p_attn
|
276 |
-
|
277 |
-
def _matmul_with_relative_values(self, x, y):
|
278 |
-
"""
|
279 |
-
x: [b, h, l, m]
|
280 |
-
y: [h or 1, m, d]
|
281 |
-
ret: [b, h, l, d]
|
282 |
-
"""
|
283 |
-
ret = torch.matmul(x, y.unsqueeze(0))
|
284 |
-
return ret
|
285 |
-
|
286 |
-
def _matmul_with_relative_keys(self, x, y):
|
287 |
-
"""
|
288 |
-
x: [b, h, l, d]
|
289 |
-
y: [h or 1, m, d]
|
290 |
-
ret: [b, h, l, m]
|
291 |
-
"""
|
292 |
-
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
293 |
-
return ret
|
294 |
-
|
295 |
-
def _get_relative_embeddings(self, relative_embeddings, length):
|
296 |
-
max_relative_position = 2 * self.window_size + 1
|
297 |
-
# Pad first before slice to avoid using cond ops.
|
298 |
-
pad_length = max(length - (self.window_size + 1), 0)
|
299 |
-
slice_start_position = max((self.window_size + 1) - length, 0)
|
300 |
-
slice_end_position = slice_start_position + 2 * length - 1
|
301 |
-
if pad_length > 0:
|
302 |
-
padded_relative_embeddings = F.pad(
|
303 |
-
relative_embeddings,
|
304 |
-
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
305 |
-
)
|
306 |
-
else:
|
307 |
-
padded_relative_embeddings = relative_embeddings
|
308 |
-
used_relative_embeddings = padded_relative_embeddings[
|
309 |
-
:, slice_start_position:slice_end_position
|
310 |
-
]
|
311 |
-
return used_relative_embeddings
|
312 |
-
|
313 |
-
def _relative_position_to_absolute_position(self, x):
|
314 |
-
"""
|
315 |
-
x: [b, h, l, 2*l-1]
|
316 |
-
ret: [b, h, l, l]
|
317 |
-
"""
|
318 |
-
batch, heads, length, _ = x.size()
|
319 |
-
# Concat columns of pad to shift from relative to absolute indexing.
|
320 |
-
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
321 |
-
|
322 |
-
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
323 |
-
x_flat = x.view([batch, heads, length * 2 * length])
|
324 |
-
x_flat = F.pad(
|
325 |
-
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
326 |
-
)
|
327 |
-
|
328 |
-
# Reshape and slice out the padded elements.
|
329 |
-
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
330 |
-
:, :, :length, length - 1 :
|
331 |
-
]
|
332 |
-
return x_final
|
333 |
-
|
334 |
-
def _absolute_position_to_relative_position(self, x):
|
335 |
-
"""
|
336 |
-
x: [b, h, l, l]
|
337 |
-
ret: [b, h, l, 2*l-1]
|
338 |
-
"""
|
339 |
-
batch, heads, length, _ = x.size()
|
340 |
-
# padd along column
|
341 |
-
x = F.pad(
|
342 |
-
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
343 |
-
)
|
344 |
-
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
345 |
-
# add 0's in the beginning that will skew the elements after reshape
|
346 |
-
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
347 |
-
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
348 |
-
return x_final
|
349 |
-
|
350 |
-
def _attention_bias_proximal(self, length):
|
351 |
-
"""Bias for self-attention to encourage attention to close positions.
|
352 |
-
Args:
|
353 |
-
length: an integer scalar.
|
354 |
-
Returns:
|
355 |
-
a Tensor with shape [1, 1, length, length]
|
356 |
-
"""
|
357 |
-
r = torch.arange(length, dtype=torch.float32)
|
358 |
-
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
359 |
-
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
360 |
-
|
361 |
-
|
362 |
-
class FFN(nn.Module):
|
363 |
-
def __init__(
|
364 |
-
self,
|
365 |
-
in_channels,
|
366 |
-
out_channels,
|
367 |
-
filter_channels,
|
368 |
-
kernel_size,
|
369 |
-
p_dropout=0.0,
|
370 |
-
activation=None,
|
371 |
-
causal=False,
|
372 |
-
):
|
373 |
-
super().__init__()
|
374 |
-
self.in_channels = in_channels
|
375 |
-
self.out_channels = out_channels
|
376 |
-
self.filter_channels = filter_channels
|
377 |
-
self.kernel_size = kernel_size
|
378 |
-
self.p_dropout = p_dropout
|
379 |
-
self.activation = activation
|
380 |
-
self.causal = causal
|
381 |
-
|
382 |
-
if causal:
|
383 |
-
self.padding = self._causal_padding
|
384 |
-
else:
|
385 |
-
self.padding = self._same_padding
|
386 |
-
|
387 |
-
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
388 |
-
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
389 |
-
self.drop = nn.Dropout(p_dropout)
|
390 |
-
|
391 |
-
def forward(self, x, x_mask):
|
392 |
-
x = self.conv_1(self.padding(x * x_mask))
|
393 |
-
if self.activation == "gelu":
|
394 |
-
x = x * torch.sigmoid(1.702 * x)
|
395 |
-
else:
|
396 |
-
x = torch.relu(x)
|
397 |
-
x = self.drop(x)
|
398 |
-
x = self.conv_2(self.padding(x * x_mask))
|
399 |
-
return x * x_mask
|
400 |
-
|
401 |
-
def _causal_padding(self, x):
|
402 |
-
if self.kernel_size == 1:
|
403 |
-
return x
|
404 |
-
pad_l = self.kernel_size - 1
|
405 |
-
pad_r = 0
|
406 |
-
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
407 |
-
x = F.pad(x, commons.convert_pad_shape(padding))
|
408 |
-
return x
|
409 |
-
|
410 |
-
def _same_padding(self, x):
|
411 |
-
if self.kernel_size == 1:
|
412 |
-
return x
|
413 |
-
pad_l = (self.kernel_size - 1) // 2
|
414 |
-
pad_r = self.kernel_size // 2
|
415 |
-
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
416 |
-
x = F.pad(x, commons.convert_pad_shape(padding))
|
417 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer_pack/commons.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
|
7 |
-
|
8 |
-
def init_weights(m, mean=0.0, std=0.01):
|
9 |
-
classname = m.__class__.__name__
|
10 |
-
if classname.find("Conv") != -1:
|
11 |
-
m.weight.data.normal_(mean, std)
|
12 |
-
|
13 |
-
|
14 |
-
def get_padding(kernel_size, dilation=1):
|
15 |
-
return int((kernel_size * dilation - dilation) / 2)
|
16 |
-
|
17 |
-
|
18 |
-
def convert_pad_shape(pad_shape):
|
19 |
-
l = pad_shape[::-1]
|
20 |
-
pad_shape = [item for sublist in l for item in sublist]
|
21 |
-
return pad_shape
|
22 |
-
|
23 |
-
|
24 |
-
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
25 |
-
"""KL(P||Q)"""
|
26 |
-
kl = (logs_q - logs_p) - 0.5
|
27 |
-
kl += (
|
28 |
-
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
29 |
-
)
|
30 |
-
return kl
|
31 |
-
|
32 |
-
|
33 |
-
def rand_gumbel(shape):
|
34 |
-
"""Sample from the Gumbel distribution, protect from overflows."""
|
35 |
-
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
36 |
-
return -torch.log(-torch.log(uniform_samples))
|
37 |
-
|
38 |
-
|
39 |
-
def rand_gumbel_like(x):
|
40 |
-
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
41 |
-
return g
|
42 |
-
|
43 |
-
|
44 |
-
def slice_segments(x, ids_str, segment_size=4):
|
45 |
-
ret = torch.zeros_like(x[:, :, :segment_size])
|
46 |
-
for i in range(x.size(0)):
|
47 |
-
idx_str = ids_str[i]
|
48 |
-
idx_end = idx_str + segment_size
|
49 |
-
ret[i] = x[i, :, idx_str:idx_end]
|
50 |
-
return ret
|
51 |
-
def slice_segments2(x, ids_str, segment_size=4):
|
52 |
-
ret = torch.zeros_like(x[:, :segment_size])
|
53 |
-
for i in range(x.size(0)):
|
54 |
-
idx_str = ids_str[i]
|
55 |
-
idx_end = idx_str + segment_size
|
56 |
-
ret[i] = x[i, idx_str:idx_end]
|
57 |
-
return ret
|
58 |
-
|
59 |
-
|
60 |
-
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
61 |
-
b, d, t = x.size()
|
62 |
-
if x_lengths is None:
|
63 |
-
x_lengths = t
|
64 |
-
ids_str_max = x_lengths - segment_size + 1
|
65 |
-
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
66 |
-
ret = slice_segments(x, ids_str, segment_size)
|
67 |
-
return ret, ids_str
|
68 |
-
|
69 |
-
|
70 |
-
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
71 |
-
position = torch.arange(length, dtype=torch.float)
|
72 |
-
num_timescales = channels // 2
|
73 |
-
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
74 |
-
num_timescales - 1
|
75 |
-
)
|
76 |
-
inv_timescales = min_timescale * torch.exp(
|
77 |
-
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
78 |
-
)
|
79 |
-
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
80 |
-
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
81 |
-
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
82 |
-
signal = signal.view(1, channels, length)
|
83 |
-
return signal
|
84 |
-
|
85 |
-
|
86 |
-
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
87 |
-
b, channels, length = x.size()
|
88 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
89 |
-
return x + signal.to(dtype=x.dtype, device=x.device)
|
90 |
-
|
91 |
-
|
92 |
-
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
93 |
-
b, channels, length = x.size()
|
94 |
-
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
95 |
-
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
96 |
-
|
97 |
-
|
98 |
-
def subsequent_mask(length):
|
99 |
-
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
100 |
-
return mask
|
101 |
-
|
102 |
-
|
103 |
-
@torch.jit.script
|
104 |
-
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
105 |
-
n_channels_int = n_channels[0]
|
106 |
-
in_act = input_a + input_b
|
107 |
-
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
108 |
-
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
109 |
-
acts = t_act * s_act
|
110 |
-
return acts
|
111 |
-
|
112 |
-
|
113 |
-
def convert_pad_shape(pad_shape):
|
114 |
-
l = pad_shape[::-1]
|
115 |
-
pad_shape = [item for sublist in l for item in sublist]
|
116 |
-
return pad_shape
|
117 |
-
|
118 |
-
|
119 |
-
def shift_1d(x):
|
120 |
-
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
121 |
-
return x
|
122 |
-
|
123 |
-
|
124 |
-
def sequence_mask(length, max_length=None):
|
125 |
-
if max_length is None:
|
126 |
-
max_length = length.max()
|
127 |
-
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
128 |
-
return x.unsqueeze(0) < length.unsqueeze(1)
|
129 |
-
|
130 |
-
|
131 |
-
def generate_path(duration, mask):
|
132 |
-
"""
|
133 |
-
duration: [b, 1, t_x]
|
134 |
-
mask: [b, 1, t_y, t_x]
|
135 |
-
"""
|
136 |
-
device = duration.device
|
137 |
-
|
138 |
-
b, _, t_y, t_x = mask.shape
|
139 |
-
cum_duration = torch.cumsum(duration, -1)
|
140 |
-
|
141 |
-
cum_duration_flat = cum_duration.view(b * t_x)
|
142 |
-
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
143 |
-
path = path.view(b, t_x, t_y)
|
144 |
-
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
145 |
-
path = path.unsqueeze(1).transpose(2, 3) * mask
|
146 |
-
return path
|
147 |
-
|
148 |
-
|
149 |
-
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
150 |
-
if isinstance(parameters, torch.Tensor):
|
151 |
-
parameters = [parameters]
|
152 |
-
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
153 |
-
norm_type = float(norm_type)
|
154 |
-
if clip_value is not None:
|
155 |
-
clip_value = float(clip_value)
|
156 |
-
|
157 |
-
total_norm = 0
|
158 |
-
for p in parameters:
|
159 |
-
param_norm = p.grad.data.norm(norm_type)
|
160 |
-
total_norm += param_norm.item() ** norm_type
|
161 |
-
if clip_value is not None:
|
162 |
-
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
163 |
-
total_norm = total_norm ** (1.0 / norm_type)
|
164 |
-
return total_norm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer_pack/models.py
DELETED
@@ -1,664 +0,0 @@
|
|
1 |
-
import math,pdb,os
|
2 |
-
from time import time as ttime
|
3 |
-
import torch
|
4 |
-
from torch import nn
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from infer_pack import modules
|
7 |
-
from infer_pack import attentions
|
8 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
9 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
10 |
-
from infer_pack.commons import init_weights
|
11 |
-
import numpy as np
|
12 |
-
from infer_pack import commons
|
13 |
-
class TextEncoder256(nn.Module):
|
14 |
-
def __init__(
|
15 |
-
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
16 |
-
super().__init__()
|
17 |
-
self.out_channels = out_channels
|
18 |
-
self.hidden_channels = hidden_channels
|
19 |
-
self.filter_channels = filter_channels
|
20 |
-
self.n_heads = n_heads
|
21 |
-
self.n_layers = n_layers
|
22 |
-
self.kernel_size = kernel_size
|
23 |
-
self.p_dropout = p_dropout
|
24 |
-
self.emb_phone = nn.Linear(256, hidden_channels)
|
25 |
-
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
26 |
-
if(f0==True):
|
27 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
28 |
-
self.encoder = attentions.Encoder(
|
29 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
30 |
-
)
|
31 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
32 |
-
|
33 |
-
def forward(self, phone, pitch, lengths):
|
34 |
-
if(pitch==None):
|
35 |
-
x = self.emb_phone(phone)
|
36 |
-
else:
|
37 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
38 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
39 |
-
x=self.lrelu(x)
|
40 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
41 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
42 |
-
x.dtype
|
43 |
-
)
|
44 |
-
x = self.encoder(x * x_mask, x_mask)
|
45 |
-
stats = self.proj(x) * x_mask
|
46 |
-
|
47 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
48 |
-
return m, logs, x_mask
|
49 |
-
class TextEncoder256km(nn.Module):
|
50 |
-
def __init__(
|
51 |
-
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
52 |
-
super().__init__()
|
53 |
-
self.out_channels = out_channels
|
54 |
-
self.hidden_channels = hidden_channels
|
55 |
-
self.filter_channels = filter_channels
|
56 |
-
self.n_heads = n_heads
|
57 |
-
self.n_layers = n_layers
|
58 |
-
self.kernel_size = kernel_size
|
59 |
-
self.p_dropout = p_dropout
|
60 |
-
# self.emb_phone = nn.Linear(256, hidden_channels)
|
61 |
-
self.emb_phone = nn.Embedding(500, hidden_channels)
|
62 |
-
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
63 |
-
if(f0==True):
|
64 |
-
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
65 |
-
self.encoder = attentions.Encoder(
|
66 |
-
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
67 |
-
)
|
68 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
69 |
-
|
70 |
-
def forward(self, phone, pitch, lengths):
|
71 |
-
if(pitch==None):
|
72 |
-
x = self.emb_phone(phone)
|
73 |
-
else:
|
74 |
-
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
75 |
-
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
76 |
-
x=self.lrelu(x)
|
77 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
78 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
79 |
-
x.dtype
|
80 |
-
)
|
81 |
-
x = self.encoder(x * x_mask, x_mask)
|
82 |
-
stats = self.proj(x) * x_mask
|
83 |
-
|
84 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
85 |
-
return m, logs, x_mask
|
86 |
-
class ResidualCouplingBlock(nn.Module):
|
87 |
-
def __init__(
|
88 |
-
self,
|
89 |
-
channels,
|
90 |
-
hidden_channels,
|
91 |
-
kernel_size,
|
92 |
-
dilation_rate,
|
93 |
-
n_layers,
|
94 |
-
n_flows=4,
|
95 |
-
gin_channels=0,
|
96 |
-
):
|
97 |
-
super().__init__()
|
98 |
-
self.channels = channels
|
99 |
-
self.hidden_channels = hidden_channels
|
100 |
-
self.kernel_size = kernel_size
|
101 |
-
self.dilation_rate = dilation_rate
|
102 |
-
self.n_layers = n_layers
|
103 |
-
self.n_flows = n_flows
|
104 |
-
self.gin_channels = gin_channels
|
105 |
-
|
106 |
-
self.flows = nn.ModuleList()
|
107 |
-
for i in range(n_flows):
|
108 |
-
self.flows.append(
|
109 |
-
modules.ResidualCouplingLayer(
|
110 |
-
channels,
|
111 |
-
hidden_channels,
|
112 |
-
kernel_size,
|
113 |
-
dilation_rate,
|
114 |
-
n_layers,
|
115 |
-
gin_channels=gin_channels,
|
116 |
-
mean_only=True,
|
117 |
-
)
|
118 |
-
)
|
119 |
-
self.flows.append(modules.Flip())
|
120 |
-
|
121 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
122 |
-
if not reverse:
|
123 |
-
for flow in self.flows:
|
124 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
125 |
-
else:
|
126 |
-
for flow in reversed(self.flows):
|
127 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
128 |
-
return x
|
129 |
-
|
130 |
-
def remove_weight_norm(self):
|
131 |
-
for i in range(self.n_flows):
|
132 |
-
self.flows[i * 2].remove_weight_norm()
|
133 |
-
class PosteriorEncoder(nn.Module):
|
134 |
-
def __init__(
|
135 |
-
self,
|
136 |
-
in_channels,
|
137 |
-
out_channels,
|
138 |
-
hidden_channels,
|
139 |
-
kernel_size,
|
140 |
-
dilation_rate,
|
141 |
-
n_layers,
|
142 |
-
gin_channels=0,
|
143 |
-
):
|
144 |
-
super().__init__()
|
145 |
-
self.in_channels = in_channels
|
146 |
-
self.out_channels = out_channels
|
147 |
-
self.hidden_channels = hidden_channels
|
148 |
-
self.kernel_size = kernel_size
|
149 |
-
self.dilation_rate = dilation_rate
|
150 |
-
self.n_layers = n_layers
|
151 |
-
self.gin_channels = gin_channels
|
152 |
-
|
153 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
154 |
-
self.enc = modules.WN(
|
155 |
-
hidden_channels,
|
156 |
-
kernel_size,
|
157 |
-
dilation_rate,
|
158 |
-
n_layers,
|
159 |
-
gin_channels=gin_channels,
|
160 |
-
)
|
161 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
162 |
-
|
163 |
-
def forward(self, x, x_lengths, g=None):
|
164 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
165 |
-
x.dtype
|
166 |
-
)
|
167 |
-
x = self.pre(x) * x_mask
|
168 |
-
x = self.enc(x, x_mask, g=g)
|
169 |
-
stats = self.proj(x) * x_mask
|
170 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
171 |
-
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
172 |
-
return z, m, logs, x_mask
|
173 |
-
|
174 |
-
def remove_weight_norm(self):
|
175 |
-
self.enc.remove_weight_norm()
|
176 |
-
class Generator(torch.nn.Module):
|
177 |
-
def __init__(
|
178 |
-
self,
|
179 |
-
initial_channel,
|
180 |
-
resblock,
|
181 |
-
resblock_kernel_sizes,
|
182 |
-
resblock_dilation_sizes,
|
183 |
-
upsample_rates,
|
184 |
-
upsample_initial_channel,
|
185 |
-
upsample_kernel_sizes,
|
186 |
-
gin_channels=0,
|
187 |
-
):
|
188 |
-
super(Generator, self).__init__()
|
189 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
190 |
-
self.num_upsamples = len(upsample_rates)
|
191 |
-
self.conv_pre = Conv1d(
|
192 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
193 |
-
)
|
194 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
195 |
-
|
196 |
-
self.ups = nn.ModuleList()
|
197 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
198 |
-
self.ups.append(
|
199 |
-
weight_norm(
|
200 |
-
ConvTranspose1d(
|
201 |
-
upsample_initial_channel // (2**i),
|
202 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
203 |
-
k,
|
204 |
-
u,
|
205 |
-
padding=(k - u) // 2,
|
206 |
-
)
|
207 |
-
)
|
208 |
-
)
|
209 |
-
|
210 |
-
self.resblocks = nn.ModuleList()
|
211 |
-
for i in range(len(self.ups)):
|
212 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
213 |
-
for j, (k, d) in enumerate(
|
214 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
215 |
-
):
|
216 |
-
self.resblocks.append(resblock(ch, k, d))
|
217 |
-
|
218 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
219 |
-
self.ups.apply(init_weights)
|
220 |
-
|
221 |
-
if gin_channels != 0:
|
222 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
223 |
-
|
224 |
-
def forward(self, x, g=None):
|
225 |
-
x = self.conv_pre(x)
|
226 |
-
if g is not None:
|
227 |
-
x = x + self.cond(g)
|
228 |
-
|
229 |
-
for i in range(self.num_upsamples):
|
230 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
231 |
-
x = self.ups[i](x)
|
232 |
-
xs = None
|
233 |
-
for j in range(self.num_kernels):
|
234 |
-
if xs is None:
|
235 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
236 |
-
else:
|
237 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
238 |
-
x = xs / self.num_kernels
|
239 |
-
x = F.leaky_relu(x)
|
240 |
-
x = self.conv_post(x)
|
241 |
-
x = torch.tanh(x)
|
242 |
-
|
243 |
-
return x
|
244 |
-
|
245 |
-
def remove_weight_norm(self):
|
246 |
-
for l in self.ups:
|
247 |
-
remove_weight_norm(l)
|
248 |
-
for l in self.resblocks:
|
249 |
-
l.remove_weight_norm()
|
250 |
-
class SineGen(torch.nn.Module):
|
251 |
-
""" Definition of sine generator
|
252 |
-
SineGen(samp_rate, harmonic_num = 0,
|
253 |
-
sine_amp = 0.1, noise_std = 0.003,
|
254 |
-
voiced_threshold = 0,
|
255 |
-
flag_for_pulse=False)
|
256 |
-
samp_rate: sampling rate in Hz
|
257 |
-
harmonic_num: number of harmonic overtones (default 0)
|
258 |
-
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
259 |
-
noise_std: std of Gaussian noise (default 0.003)
|
260 |
-
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
261 |
-
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
262 |
-
Note: when flag_for_pulse is True, the first time step of a voiced
|
263 |
-
segment is always sin(np.pi) or cos(0)
|
264 |
-
"""
|
265 |
-
|
266 |
-
def __init__(self, samp_rate, harmonic_num=0,
|
267 |
-
sine_amp=0.1, noise_std=0.003,
|
268 |
-
voiced_threshold=0,
|
269 |
-
flag_for_pulse=False):
|
270 |
-
super(SineGen, self).__init__()
|
271 |
-
self.sine_amp = sine_amp
|
272 |
-
self.noise_std = noise_std
|
273 |
-
self.harmonic_num = harmonic_num
|
274 |
-
self.dim = self.harmonic_num + 1
|
275 |
-
self.sampling_rate = samp_rate
|
276 |
-
self.voiced_threshold = voiced_threshold
|
277 |
-
|
278 |
-
def _f02uv(self, f0):
|
279 |
-
# generate uv signal
|
280 |
-
uv = torch.ones_like(f0)
|
281 |
-
uv = uv * (f0 > self.voiced_threshold)
|
282 |
-
return uv
|
283 |
-
|
284 |
-
def forward(self, f0,upp):
|
285 |
-
""" sine_tensor, uv = forward(f0)
|
286 |
-
input F0: tensor(batchsize=1, length, dim=1)
|
287 |
-
f0 for unvoiced steps should be 0
|
288 |
-
output sine_tensor: tensor(batchsize=1, length, dim)
|
289 |
-
output uv: tensor(batchsize=1, length, 1)
|
290 |
-
"""
|
291 |
-
with torch.no_grad():
|
292 |
-
f0 = f0[:, None].transpose(1, 2)
|
293 |
-
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
|
294 |
-
# fundamental component
|
295 |
-
f0_buf[:, :, 0] = f0[:, :, 0]
|
296 |
-
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
297 |
-
rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
|
298 |
-
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
299 |
-
rand_ini[:, 0] = 0
|
300 |
-
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
301 |
-
tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
|
302 |
-
tmp_over_one*=upp
|
303 |
-
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
|
304 |
-
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
|
305 |
-
tmp_over_one%=1
|
306 |
-
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
307 |
-
cumsum_shift = torch.zeros_like(rad_values)
|
308 |
-
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
309 |
-
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
310 |
-
sine_waves = sine_waves * self.sine_amp
|
311 |
-
uv = self._f02uv(f0)
|
312 |
-
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
313 |
-
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
314 |
-
noise = noise_amp * torch.randn_like(sine_waves)
|
315 |
-
sine_waves = sine_waves * uv + noise
|
316 |
-
return sine_waves, uv, noise
|
317 |
-
class SourceModuleHnNSF(torch.nn.Module):
|
318 |
-
""" SourceModule for hn-nsf
|
319 |
-
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
320 |
-
add_noise_std=0.003, voiced_threshod=0)
|
321 |
-
sampling_rate: sampling_rate in Hz
|
322 |
-
harmonic_num: number of harmonic above F0 (default: 0)
|
323 |
-
sine_amp: amplitude of sine source signal (default: 0.1)
|
324 |
-
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
325 |
-
note that amplitude of noise in unvoiced is decided
|
326 |
-
by sine_amp
|
327 |
-
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
328 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
329 |
-
F0_sampled (batchsize, length, 1)
|
330 |
-
Sine_source (batchsize, length, 1)
|
331 |
-
noise_source (batchsize, length 1)
|
332 |
-
uv (batchsize, length, 1)
|
333 |
-
"""
|
334 |
-
|
335 |
-
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
336 |
-
add_noise_std=0.003, voiced_threshod=0,is_half=True):
|
337 |
-
super(SourceModuleHnNSF, self).__init__()
|
338 |
-
|
339 |
-
self.sine_amp = sine_amp
|
340 |
-
self.noise_std = add_noise_std
|
341 |
-
self.is_half=is_half
|
342 |
-
# to produce sine waveforms
|
343 |
-
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
344 |
-
sine_amp, add_noise_std, voiced_threshod)
|
345 |
-
|
346 |
-
# to merge source harmonics into a single excitation
|
347 |
-
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
348 |
-
self.l_tanh = torch.nn.Tanh()
|
349 |
-
|
350 |
-
def forward(self, x,upp=None):
|
351 |
-
sine_wavs, uv, _ = self.l_sin_gen(x,upp)
|
352 |
-
if(self.is_half==True):sine_wavs=sine_wavs.half()
|
353 |
-
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
354 |
-
return sine_merge,None,None# noise, uv
|
355 |
-
class GeneratorNSF(torch.nn.Module):
|
356 |
-
def __init__(
|
357 |
-
self,
|
358 |
-
initial_channel,
|
359 |
-
resblock,
|
360 |
-
resblock_kernel_sizes,
|
361 |
-
resblock_dilation_sizes,
|
362 |
-
upsample_rates,
|
363 |
-
upsample_initial_channel,
|
364 |
-
upsample_kernel_sizes,
|
365 |
-
gin_channels=0,
|
366 |
-
sr=40000,
|
367 |
-
is_half=False
|
368 |
-
):
|
369 |
-
super(GeneratorNSF, self).__init__()
|
370 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
371 |
-
self.num_upsamples = len(upsample_rates)
|
372 |
-
|
373 |
-
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
374 |
-
self.m_source = SourceModuleHnNSF(
|
375 |
-
sampling_rate=sr,
|
376 |
-
harmonic_num=0,
|
377 |
-
is_half=is_half
|
378 |
-
)
|
379 |
-
self.noise_convs = nn.ModuleList()
|
380 |
-
self.conv_pre = Conv1d(
|
381 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
382 |
-
)
|
383 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
384 |
-
|
385 |
-
self.ups = nn.ModuleList()
|
386 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
387 |
-
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
388 |
-
self.ups.append(
|
389 |
-
weight_norm(
|
390 |
-
ConvTranspose1d(
|
391 |
-
upsample_initial_channel // (2**i),
|
392 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
393 |
-
k,
|
394 |
-
u,
|
395 |
-
padding=(k - u) // 2,
|
396 |
-
)
|
397 |
-
)
|
398 |
-
)
|
399 |
-
if i + 1 < len(upsample_rates):
|
400 |
-
stride_f0 = np.prod(upsample_rates[i + 1:])
|
401 |
-
self.noise_convs.append(Conv1d(
|
402 |
-
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
403 |
-
else:
|
404 |
-
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
405 |
-
|
406 |
-
self.resblocks = nn.ModuleList()
|
407 |
-
for i in range(len(self.ups)):
|
408 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
409 |
-
for j, (k, d) in enumerate(
|
410 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
411 |
-
):
|
412 |
-
self.resblocks.append(resblock(ch, k, d))
|
413 |
-
|
414 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
415 |
-
self.ups.apply(init_weights)
|
416 |
-
|
417 |
-
if gin_channels != 0:
|
418 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
419 |
-
|
420 |
-
self.upp=np.prod(upsample_rates)
|
421 |
-
|
422 |
-
def forward(self, x, f0,g=None):
|
423 |
-
har_source, noi_source, uv = self.m_source(f0,self.upp)
|
424 |
-
har_source = har_source.transpose(1, 2)
|
425 |
-
x = self.conv_pre(x)
|
426 |
-
if g is not None:
|
427 |
-
x = x + self.cond(g)
|
428 |
-
|
429 |
-
for i in range(self.num_upsamples):
|
430 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
431 |
-
x = self.ups[i](x)
|
432 |
-
x_source = self.noise_convs[i](har_source)
|
433 |
-
x = x + x_source
|
434 |
-
xs = None
|
435 |
-
for j in range(self.num_kernels):
|
436 |
-
if xs is None:
|
437 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
438 |
-
else:
|
439 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
440 |
-
x = xs / self.num_kernels
|
441 |
-
x = F.leaky_relu(x)
|
442 |
-
x = self.conv_post(x)
|
443 |
-
x = torch.tanh(x)
|
444 |
-
return x
|
445 |
-
|
446 |
-
def remove_weight_norm(self):
|
447 |
-
for l in self.ups:
|
448 |
-
remove_weight_norm(l)
|
449 |
-
for l in self.resblocks:
|
450 |
-
l.remove_weight_norm()
|
451 |
-
class SynthesizerTrnMs256NSF(nn.Module):
|
452 |
-
"""
|
453 |
-
Synthesizer for Training
|
454 |
-
"""
|
455 |
-
|
456 |
-
def __init__(
|
457 |
-
self,
|
458 |
-
spec_channels,
|
459 |
-
segment_size,
|
460 |
-
inter_channels,
|
461 |
-
hidden_channels,
|
462 |
-
filter_channels,
|
463 |
-
n_heads,
|
464 |
-
n_layers,
|
465 |
-
kernel_size,
|
466 |
-
p_dropout,
|
467 |
-
resblock,
|
468 |
-
resblock_kernel_sizes,
|
469 |
-
resblock_dilation_sizes,
|
470 |
-
upsample_rates,
|
471 |
-
upsample_initial_channel,
|
472 |
-
upsample_kernel_sizes,
|
473 |
-
spk_embed_dim,
|
474 |
-
gin_channels=0,
|
475 |
-
sr=40000,
|
476 |
-
**kwargs
|
477 |
-
):
|
478 |
-
|
479 |
-
super().__init__()
|
480 |
-
self.spec_channels = spec_channels
|
481 |
-
self.inter_channels = inter_channels
|
482 |
-
self.hidden_channels = hidden_channels
|
483 |
-
self.filter_channels = filter_channels
|
484 |
-
self.n_heads = n_heads
|
485 |
-
self.n_layers = n_layers
|
486 |
-
self.kernel_size = kernel_size
|
487 |
-
self.p_dropout = p_dropout
|
488 |
-
self.resblock = resblock
|
489 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
490 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
491 |
-
self.upsample_rates = upsample_rates
|
492 |
-
self.upsample_initial_channel = upsample_initial_channel
|
493 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
494 |
-
self.segment_size = segment_size
|
495 |
-
self.gin_channels = gin_channels
|
496 |
-
self.spk_embed_dim=spk_embed_dim
|
497 |
-
self.enc_p = TextEncoder256(
|
498 |
-
inter_channels,
|
499 |
-
hidden_channels,
|
500 |
-
filter_channels,
|
501 |
-
n_heads,
|
502 |
-
n_layers,
|
503 |
-
kernel_size,
|
504 |
-
p_dropout,
|
505 |
-
)
|
506 |
-
self.dec = GeneratorNSF(
|
507 |
-
inter_channels,
|
508 |
-
resblock,
|
509 |
-
resblock_kernel_sizes,
|
510 |
-
resblock_dilation_sizes,
|
511 |
-
upsample_rates,
|
512 |
-
upsample_initial_channel,
|
513 |
-
upsample_kernel_sizes,
|
514 |
-
gin_channels=0,
|
515 |
-
sr=sr,
|
516 |
-
is_half=kwargs["is_half"]
|
517 |
-
)
|
518 |
-
self.enc_q = PosteriorEncoder(
|
519 |
-
spec_channels,
|
520 |
-
inter_channels,
|
521 |
-
hidden_channels,
|
522 |
-
5,
|
523 |
-
1,
|
524 |
-
16,
|
525 |
-
gin_channels=gin_channels,
|
526 |
-
)
|
527 |
-
self.flow = ResidualCouplingBlock(
|
528 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
529 |
-
)
|
530 |
-
self.emb_g = nn.Linear(self.spk_embed_dim, gin_channels)
|
531 |
-
|
532 |
-
def remove_weight_norm(self):
|
533 |
-
self.dec.remove_weight_norm()
|
534 |
-
self.flow.remove_weight_norm()
|
535 |
-
self.enc_q.remove_weight_norm()
|
536 |
-
|
537 |
-
def infer(self, phone, phone_lengths, pitch,pitchf, ds,max_len=None):
|
538 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
539 |
-
if("float16"in str(m_p.dtype)):ds=ds.half()
|
540 |
-
ds=ds.to(m_p.device)
|
541 |
-
g = self.emb_g(ds).unsqueeze(-1) # [b, h, 1]#
|
542 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66) * x_mask
|
543 |
-
|
544 |
-
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
545 |
-
o = self.dec((z * x_mask)[:, :, :max_len],pitchf, g=None)
|
546 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
547 |
-
class SynthesizerTrn256NSFkm(nn.Module):
|
548 |
-
"""
|
549 |
-
Synthesizer for Training
|
550 |
-
"""
|
551 |
-
|
552 |
-
def __init__(
|
553 |
-
self,
|
554 |
-
spec_channels,
|
555 |
-
segment_size,
|
556 |
-
inter_channels,
|
557 |
-
hidden_channels,
|
558 |
-
filter_channels,
|
559 |
-
n_heads,
|
560 |
-
n_layers,
|
561 |
-
kernel_size,
|
562 |
-
p_dropout,
|
563 |
-
resblock,
|
564 |
-
resblock_kernel_sizes,
|
565 |
-
resblock_dilation_sizes,
|
566 |
-
upsample_rates,
|
567 |
-
upsample_initial_channel,
|
568 |
-
upsample_kernel_sizes,
|
569 |
-
spk_embed_dim,
|
570 |
-
gin_channels=0,
|
571 |
-
sr=40000,
|
572 |
-
**kwargs
|
573 |
-
):
|
574 |
-
|
575 |
-
super().__init__()
|
576 |
-
self.spec_channels = spec_channels
|
577 |
-
self.inter_channels = inter_channels
|
578 |
-
self.hidden_channels = hidden_channels
|
579 |
-
self.filter_channels = filter_channels
|
580 |
-
self.n_heads = n_heads
|
581 |
-
self.n_layers = n_layers
|
582 |
-
self.kernel_size = kernel_size
|
583 |
-
self.p_dropout = p_dropout
|
584 |
-
self.resblock = resblock
|
585 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
586 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
587 |
-
self.upsample_rates = upsample_rates
|
588 |
-
self.upsample_initial_channel = upsample_initial_channel
|
589 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
590 |
-
self.segment_size = segment_size
|
591 |
-
self.gin_channels = gin_channels
|
592 |
-
|
593 |
-
self.enc_p = TextEncoder256km(
|
594 |
-
inter_channels,
|
595 |
-
hidden_channels,
|
596 |
-
filter_channels,
|
597 |
-
n_heads,
|
598 |
-
n_layers,
|
599 |
-
kernel_size,
|
600 |
-
p_dropout,
|
601 |
-
)
|
602 |
-
self.dec = GeneratorNSF(
|
603 |
-
inter_channels,
|
604 |
-
resblock,
|
605 |
-
resblock_kernel_sizes,
|
606 |
-
resblock_dilation_sizes,
|
607 |
-
upsample_rates,
|
608 |
-
upsample_initial_channel,
|
609 |
-
upsample_kernel_sizes,
|
610 |
-
gin_channels=0,
|
611 |
-
sr=sr,
|
612 |
-
is_half=kwargs["is_half"]
|
613 |
-
)
|
614 |
-
self.enc_q = PosteriorEncoder(
|
615 |
-
spec_channels,
|
616 |
-
inter_channels,
|
617 |
-
hidden_channels,
|
618 |
-
5,
|
619 |
-
1,
|
620 |
-
16,
|
621 |
-
gin_channels=gin_channels,
|
622 |
-
)
|
623 |
-
self.flow = ResidualCouplingBlock(
|
624 |
-
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
625 |
-
)
|
626 |
-
|
627 |
-
def remove_weight_norm(self):
|
628 |
-
self.dec.remove_weight_norm()
|
629 |
-
self.flow.remove_weight_norm()
|
630 |
-
self.enc_q.remove_weight_norm()
|
631 |
-
|
632 |
-
def forward(self, phone, phone_lengths, pitch, pitchf, y, y_lengths):
|
633 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
634 |
-
|
635 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=None)
|
636 |
-
z_p = self.flow(z, y_mask, g=None)
|
637 |
-
|
638 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
639 |
-
z, y_lengths, self.segment_size
|
640 |
-
)
|
641 |
-
|
642 |
-
pitchf = commons.slice_segments2(
|
643 |
-
pitchf, ids_slice, self.segment_size
|
644 |
-
)
|
645 |
-
o = self.dec(z_slice, pitchf,g=None)
|
646 |
-
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
647 |
-
|
648 |
-
def infer(self, phone, phone_lengths, pitch, nsff0,max_len=None):
|
649 |
-
# torch.cuda.synchronize()
|
650 |
-
# t0=ttime()
|
651 |
-
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
652 |
-
# torch.cuda.synchronize()
|
653 |
-
# t1=ttime()
|
654 |
-
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66) * x_mask
|
655 |
-
# torch.cuda.synchronize()
|
656 |
-
# t2=ttime()
|
657 |
-
z = self.flow(z_p, x_mask, g=None, reverse=True)
|
658 |
-
# torch.cuda.synchronize()
|
659 |
-
# t3=ttime()
|
660 |
-
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=None)
|
661 |
-
# torch.cuda.synchronize()
|
662 |
-
# t4=ttime()
|
663 |
-
# print(1233333333333333333333333,t1-t0,t2-t1,t3-t2,t4-t3)
|
664 |
-
return o, x_mask, (z, z_p, m_p, logs_p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer_pack/modules.py
DELETED
@@ -1,522 +0,0 @@
|
|
1 |
-
import copy
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import scipy
|
5 |
-
import torch
|
6 |
-
from torch import nn
|
7 |
-
from torch.nn import functional as F
|
8 |
-
|
9 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
-
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
-
|
12 |
-
from infer_pack import commons
|
13 |
-
from infer_pack.commons import init_weights, get_padding
|
14 |
-
from infer_pack.transforms import piecewise_rational_quadratic_transform
|
15 |
-
|
16 |
-
|
17 |
-
LRELU_SLOPE = 0.1
|
18 |
-
|
19 |
-
|
20 |
-
class LayerNorm(nn.Module):
|
21 |
-
def __init__(self, channels, eps=1e-5):
|
22 |
-
super().__init__()
|
23 |
-
self.channels = channels
|
24 |
-
self.eps = eps
|
25 |
-
|
26 |
-
self.gamma = nn.Parameter(torch.ones(channels))
|
27 |
-
self.beta = nn.Parameter(torch.zeros(channels))
|
28 |
-
|
29 |
-
def forward(self, x):
|
30 |
-
x = x.transpose(1, -1)
|
31 |
-
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
32 |
-
return x.transpose(1, -1)
|
33 |
-
|
34 |
-
|
35 |
-
class ConvReluNorm(nn.Module):
|
36 |
-
def __init__(
|
37 |
-
self,
|
38 |
-
in_channels,
|
39 |
-
hidden_channels,
|
40 |
-
out_channels,
|
41 |
-
kernel_size,
|
42 |
-
n_layers,
|
43 |
-
p_dropout,
|
44 |
-
):
|
45 |
-
super().__init__()
|
46 |
-
self.in_channels = in_channels
|
47 |
-
self.hidden_channels = hidden_channels
|
48 |
-
self.out_channels = out_channels
|
49 |
-
self.kernel_size = kernel_size
|
50 |
-
self.n_layers = n_layers
|
51 |
-
self.p_dropout = p_dropout
|
52 |
-
assert n_layers > 1, "Number of layers should be larger than 0."
|
53 |
-
|
54 |
-
self.conv_layers = nn.ModuleList()
|
55 |
-
self.norm_layers = nn.ModuleList()
|
56 |
-
self.conv_layers.append(
|
57 |
-
nn.Conv1d(
|
58 |
-
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
59 |
-
)
|
60 |
-
)
|
61 |
-
self.norm_layers.append(LayerNorm(hidden_channels))
|
62 |
-
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
63 |
-
for _ in range(n_layers - 1):
|
64 |
-
self.conv_layers.append(
|
65 |
-
nn.Conv1d(
|
66 |
-
hidden_channels,
|
67 |
-
hidden_channels,
|
68 |
-
kernel_size,
|
69 |
-
padding=kernel_size // 2,
|
70 |
-
)
|
71 |
-
)
|
72 |
-
self.norm_layers.append(LayerNorm(hidden_channels))
|
73 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
74 |
-
self.proj.weight.data.zero_()
|
75 |
-
self.proj.bias.data.zero_()
|
76 |
-
|
77 |
-
def forward(self, x, x_mask):
|
78 |
-
x_org = x
|
79 |
-
for i in range(self.n_layers):
|
80 |
-
x = self.conv_layers[i](x * x_mask)
|
81 |
-
x = self.norm_layers[i](x)
|
82 |
-
x = self.relu_drop(x)
|
83 |
-
x = x_org + self.proj(x)
|
84 |
-
return x * x_mask
|
85 |
-
|
86 |
-
|
87 |
-
class DDSConv(nn.Module):
|
88 |
-
"""
|
89 |
-
Dialted and Depth-Separable Convolution
|
90 |
-
"""
|
91 |
-
|
92 |
-
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
93 |
-
super().__init__()
|
94 |
-
self.channels = channels
|
95 |
-
self.kernel_size = kernel_size
|
96 |
-
self.n_layers = n_layers
|
97 |
-
self.p_dropout = p_dropout
|
98 |
-
|
99 |
-
self.drop = nn.Dropout(p_dropout)
|
100 |
-
self.convs_sep = nn.ModuleList()
|
101 |
-
self.convs_1x1 = nn.ModuleList()
|
102 |
-
self.norms_1 = nn.ModuleList()
|
103 |
-
self.norms_2 = nn.ModuleList()
|
104 |
-
for i in range(n_layers):
|
105 |
-
dilation = kernel_size**i
|
106 |
-
padding = (kernel_size * dilation - dilation) // 2
|
107 |
-
self.convs_sep.append(
|
108 |
-
nn.Conv1d(
|
109 |
-
channels,
|
110 |
-
channels,
|
111 |
-
kernel_size,
|
112 |
-
groups=channels,
|
113 |
-
dilation=dilation,
|
114 |
-
padding=padding,
|
115 |
-
)
|
116 |
-
)
|
117 |
-
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
118 |
-
self.norms_1.append(LayerNorm(channels))
|
119 |
-
self.norms_2.append(LayerNorm(channels))
|
120 |
-
|
121 |
-
def forward(self, x, x_mask, g=None):
|
122 |
-
if g is not None:
|
123 |
-
x = x + g
|
124 |
-
for i in range(self.n_layers):
|
125 |
-
y = self.convs_sep[i](x * x_mask)
|
126 |
-
y = self.norms_1[i](y)
|
127 |
-
y = F.gelu(y)
|
128 |
-
y = self.convs_1x1[i](y)
|
129 |
-
y = self.norms_2[i](y)
|
130 |
-
y = F.gelu(y)
|
131 |
-
y = self.drop(y)
|
132 |
-
x = x + y
|
133 |
-
return x * x_mask
|
134 |
-
|
135 |
-
|
136 |
-
class WN(torch.nn.Module):
|
137 |
-
def __init__(
|
138 |
-
self,
|
139 |
-
hidden_channels,
|
140 |
-
kernel_size,
|
141 |
-
dilation_rate,
|
142 |
-
n_layers,
|
143 |
-
gin_channels=0,
|
144 |
-
p_dropout=0,
|
145 |
-
):
|
146 |
-
super(WN, self).__init__()
|
147 |
-
assert kernel_size % 2 == 1
|
148 |
-
self.hidden_channels = hidden_channels
|
149 |
-
self.kernel_size = (kernel_size,)
|
150 |
-
self.dilation_rate = dilation_rate
|
151 |
-
self.n_layers = n_layers
|
152 |
-
self.gin_channels = gin_channels
|
153 |
-
self.p_dropout = p_dropout
|
154 |
-
|
155 |
-
self.in_layers = torch.nn.ModuleList()
|
156 |
-
self.res_skip_layers = torch.nn.ModuleList()
|
157 |
-
self.drop = nn.Dropout(p_dropout)
|
158 |
-
|
159 |
-
if gin_channels != 0:
|
160 |
-
cond_layer = torch.nn.Conv1d(
|
161 |
-
gin_channels, 2 * hidden_channels * n_layers, 1
|
162 |
-
)
|
163 |
-
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
164 |
-
|
165 |
-
for i in range(n_layers):
|
166 |
-
dilation = dilation_rate**i
|
167 |
-
padding = int((kernel_size * dilation - dilation) / 2)
|
168 |
-
in_layer = torch.nn.Conv1d(
|
169 |
-
hidden_channels,
|
170 |
-
2 * hidden_channels,
|
171 |
-
kernel_size,
|
172 |
-
dilation=dilation,
|
173 |
-
padding=padding,
|
174 |
-
)
|
175 |
-
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
176 |
-
self.in_layers.append(in_layer)
|
177 |
-
|
178 |
-
# last one is not necessary
|
179 |
-
if i < n_layers - 1:
|
180 |
-
res_skip_channels = 2 * hidden_channels
|
181 |
-
else:
|
182 |
-
res_skip_channels = hidden_channels
|
183 |
-
|
184 |
-
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
185 |
-
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
186 |
-
self.res_skip_layers.append(res_skip_layer)
|
187 |
-
|
188 |
-
def forward(self, x, x_mask, g=None, **kwargs):
|
189 |
-
output = torch.zeros_like(x)
|
190 |
-
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
191 |
-
|
192 |
-
if g is not None:
|
193 |
-
g = self.cond_layer(g)
|
194 |
-
|
195 |
-
for i in range(self.n_layers):
|
196 |
-
x_in = self.in_layers[i](x)
|
197 |
-
if g is not None:
|
198 |
-
cond_offset = i * 2 * self.hidden_channels
|
199 |
-
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
200 |
-
else:
|
201 |
-
g_l = torch.zeros_like(x_in)
|
202 |
-
|
203 |
-
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
204 |
-
acts = self.drop(acts)
|
205 |
-
|
206 |
-
res_skip_acts = self.res_skip_layers[i](acts)
|
207 |
-
if i < self.n_layers - 1:
|
208 |
-
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
209 |
-
x = (x + res_acts) * x_mask
|
210 |
-
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
211 |
-
else:
|
212 |
-
output = output + res_skip_acts
|
213 |
-
return output * x_mask
|
214 |
-
|
215 |
-
def remove_weight_norm(self):
|
216 |
-
if self.gin_channels != 0:
|
217 |
-
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
218 |
-
for l in self.in_layers:
|
219 |
-
torch.nn.utils.remove_weight_norm(l)
|
220 |
-
for l in self.res_skip_layers:
|
221 |
-
torch.nn.utils.remove_weight_norm(l)
|
222 |
-
|
223 |
-
|
224 |
-
class ResBlock1(torch.nn.Module):
|
225 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
226 |
-
super(ResBlock1, self).__init__()
|
227 |
-
self.convs1 = nn.ModuleList(
|
228 |
-
[
|
229 |
-
weight_norm(
|
230 |
-
Conv1d(
|
231 |
-
channels,
|
232 |
-
channels,
|
233 |
-
kernel_size,
|
234 |
-
1,
|
235 |
-
dilation=dilation[0],
|
236 |
-
padding=get_padding(kernel_size, dilation[0]),
|
237 |
-
)
|
238 |
-
),
|
239 |
-
weight_norm(
|
240 |
-
Conv1d(
|
241 |
-
channels,
|
242 |
-
channels,
|
243 |
-
kernel_size,
|
244 |
-
1,
|
245 |
-
dilation=dilation[1],
|
246 |
-
padding=get_padding(kernel_size, dilation[1]),
|
247 |
-
)
|
248 |
-
),
|
249 |
-
weight_norm(
|
250 |
-
Conv1d(
|
251 |
-
channels,
|
252 |
-
channels,
|
253 |
-
kernel_size,
|
254 |
-
1,
|
255 |
-
dilation=dilation[2],
|
256 |
-
padding=get_padding(kernel_size, dilation[2]),
|
257 |
-
)
|
258 |
-
),
|
259 |
-
]
|
260 |
-
)
|
261 |
-
self.convs1.apply(init_weights)
|
262 |
-
|
263 |
-
self.convs2 = nn.ModuleList(
|
264 |
-
[
|
265 |
-
weight_norm(
|
266 |
-
Conv1d(
|
267 |
-
channels,
|
268 |
-
channels,
|
269 |
-
kernel_size,
|
270 |
-
1,
|
271 |
-
dilation=1,
|
272 |
-
padding=get_padding(kernel_size, 1),
|
273 |
-
)
|
274 |
-
),
|
275 |
-
weight_norm(
|
276 |
-
Conv1d(
|
277 |
-
channels,
|
278 |
-
channels,
|
279 |
-
kernel_size,
|
280 |
-
1,
|
281 |
-
dilation=1,
|
282 |
-
padding=get_padding(kernel_size, 1),
|
283 |
-
)
|
284 |
-
),
|
285 |
-
weight_norm(
|
286 |
-
Conv1d(
|
287 |
-
channels,
|
288 |
-
channels,
|
289 |
-
kernel_size,
|
290 |
-
1,
|
291 |
-
dilation=1,
|
292 |
-
padding=get_padding(kernel_size, 1),
|
293 |
-
)
|
294 |
-
),
|
295 |
-
]
|
296 |
-
)
|
297 |
-
self.convs2.apply(init_weights)
|
298 |
-
|
299 |
-
def forward(self, x, x_mask=None):
|
300 |
-
for c1, c2 in zip(self.convs1, self.convs2):
|
301 |
-
xt = F.leaky_relu(x, LRELU_SLOPE)
|
302 |
-
if x_mask is not None:
|
303 |
-
xt = xt * x_mask
|
304 |
-
xt = c1(xt)
|
305 |
-
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
306 |
-
if x_mask is not None:
|
307 |
-
xt = xt * x_mask
|
308 |
-
xt = c2(xt)
|
309 |
-
x = xt + x
|
310 |
-
if x_mask is not None:
|
311 |
-
x = x * x_mask
|
312 |
-
return x
|
313 |
-
|
314 |
-
def remove_weight_norm(self):
|
315 |
-
for l in self.convs1:
|
316 |
-
remove_weight_norm(l)
|
317 |
-
for l in self.convs2:
|
318 |
-
remove_weight_norm(l)
|
319 |
-
|
320 |
-
|
321 |
-
class ResBlock2(torch.nn.Module):
|
322 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
323 |
-
super(ResBlock2, self).__init__()
|
324 |
-
self.convs = nn.ModuleList(
|
325 |
-
[
|
326 |
-
weight_norm(
|
327 |
-
Conv1d(
|
328 |
-
channels,
|
329 |
-
channels,
|
330 |
-
kernel_size,
|
331 |
-
1,
|
332 |
-
dilation=dilation[0],
|
333 |
-
padding=get_padding(kernel_size, dilation[0]),
|
334 |
-
)
|
335 |
-
),
|
336 |
-
weight_norm(
|
337 |
-
Conv1d(
|
338 |
-
channels,
|
339 |
-
channels,
|
340 |
-
kernel_size,
|
341 |
-
1,
|
342 |
-
dilation=dilation[1],
|
343 |
-
padding=get_padding(kernel_size, dilation[1]),
|
344 |
-
)
|
345 |
-
),
|
346 |
-
]
|
347 |
-
)
|
348 |
-
self.convs.apply(init_weights)
|
349 |
-
|
350 |
-
def forward(self, x, x_mask=None):
|
351 |
-
for c in self.convs:
|
352 |
-
xt = F.leaky_relu(x, LRELU_SLOPE)
|
353 |
-
if x_mask is not None:
|
354 |
-
xt = xt * x_mask
|
355 |
-
xt = c(xt)
|
356 |
-
x = xt + x
|
357 |
-
if x_mask is not None:
|
358 |
-
x = x * x_mask
|
359 |
-
return x
|
360 |
-
|
361 |
-
def remove_weight_norm(self):
|
362 |
-
for l in self.convs:
|
363 |
-
remove_weight_norm(l)
|
364 |
-
|
365 |
-
|
366 |
-
class Log(nn.Module):
|
367 |
-
def forward(self, x, x_mask, reverse=False, **kwargs):
|
368 |
-
if not reverse:
|
369 |
-
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
370 |
-
logdet = torch.sum(-y, [1, 2])
|
371 |
-
return y, logdet
|
372 |
-
else:
|
373 |
-
x = torch.exp(x) * x_mask
|
374 |
-
return x
|
375 |
-
|
376 |
-
|
377 |
-
class Flip(nn.Module):
|
378 |
-
def forward(self, x, *args, reverse=False, **kwargs):
|
379 |
-
x = torch.flip(x, [1])
|
380 |
-
if not reverse:
|
381 |
-
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
382 |
-
return x, logdet
|
383 |
-
else:
|
384 |
-
return x
|
385 |
-
|
386 |
-
|
387 |
-
class ElementwiseAffine(nn.Module):
|
388 |
-
def __init__(self, channels):
|
389 |
-
super().__init__()
|
390 |
-
self.channels = channels
|
391 |
-
self.m = nn.Parameter(torch.zeros(channels, 1))
|
392 |
-
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
393 |
-
|
394 |
-
def forward(self, x, x_mask, reverse=False, **kwargs):
|
395 |
-
if not reverse:
|
396 |
-
y = self.m + torch.exp(self.logs) * x
|
397 |
-
y = y * x_mask
|
398 |
-
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
399 |
-
return y, logdet
|
400 |
-
else:
|
401 |
-
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
402 |
-
return x
|
403 |
-
|
404 |
-
|
405 |
-
class ResidualCouplingLayer(nn.Module):
|
406 |
-
def __init__(
|
407 |
-
self,
|
408 |
-
channels,
|
409 |
-
hidden_channels,
|
410 |
-
kernel_size,
|
411 |
-
dilation_rate,
|
412 |
-
n_layers,
|
413 |
-
p_dropout=0,
|
414 |
-
gin_channels=0,
|
415 |
-
mean_only=False,
|
416 |
-
):
|
417 |
-
assert channels % 2 == 0, "channels should be divisible by 2"
|
418 |
-
super().__init__()
|
419 |
-
self.channels = channels
|
420 |
-
self.hidden_channels = hidden_channels
|
421 |
-
self.kernel_size = kernel_size
|
422 |
-
self.dilation_rate = dilation_rate
|
423 |
-
self.n_layers = n_layers
|
424 |
-
self.half_channels = channels // 2
|
425 |
-
self.mean_only = mean_only
|
426 |
-
|
427 |
-
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
428 |
-
self.enc = WN(
|
429 |
-
hidden_channels,
|
430 |
-
kernel_size,
|
431 |
-
dilation_rate,
|
432 |
-
n_layers,
|
433 |
-
p_dropout=p_dropout,
|
434 |
-
gin_channels=gin_channels,
|
435 |
-
)
|
436 |
-
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
437 |
-
self.post.weight.data.zero_()
|
438 |
-
self.post.bias.data.zero_()
|
439 |
-
|
440 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
441 |
-
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
442 |
-
h = self.pre(x0) * x_mask
|
443 |
-
h = self.enc(h, x_mask, g=g)
|
444 |
-
stats = self.post(h) * x_mask
|
445 |
-
if not self.mean_only:
|
446 |
-
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
447 |
-
else:
|
448 |
-
m = stats
|
449 |
-
logs = torch.zeros_like(m)
|
450 |
-
|
451 |
-
if not reverse:
|
452 |
-
x1 = m + x1 * torch.exp(logs) * x_mask
|
453 |
-
x = torch.cat([x0, x1], 1)
|
454 |
-
logdet = torch.sum(logs, [1, 2])
|
455 |
-
return x, logdet
|
456 |
-
else:
|
457 |
-
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
458 |
-
x = torch.cat([x0, x1], 1)
|
459 |
-
return x
|
460 |
-
|
461 |
-
def remove_weight_norm(self):
|
462 |
-
self.enc.remove_weight_norm()
|
463 |
-
|
464 |
-
|
465 |
-
class ConvFlow(nn.Module):
|
466 |
-
def __init__(
|
467 |
-
self,
|
468 |
-
in_channels,
|
469 |
-
filter_channels,
|
470 |
-
kernel_size,
|
471 |
-
n_layers,
|
472 |
-
num_bins=10,
|
473 |
-
tail_bound=5.0,
|
474 |
-
):
|
475 |
-
super().__init__()
|
476 |
-
self.in_channels = in_channels
|
477 |
-
self.filter_channels = filter_channels
|
478 |
-
self.kernel_size = kernel_size
|
479 |
-
self.n_layers = n_layers
|
480 |
-
self.num_bins = num_bins
|
481 |
-
self.tail_bound = tail_bound
|
482 |
-
self.half_channels = in_channels // 2
|
483 |
-
|
484 |
-
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
485 |
-
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
486 |
-
self.proj = nn.Conv1d(
|
487 |
-
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
488 |
-
)
|
489 |
-
self.proj.weight.data.zero_()
|
490 |
-
self.proj.bias.data.zero_()
|
491 |
-
|
492 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
493 |
-
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
494 |
-
h = self.pre(x0)
|
495 |
-
h = self.convs(h, x_mask, g=g)
|
496 |
-
h = self.proj(h) * x_mask
|
497 |
-
|
498 |
-
b, c, t = x0.shape
|
499 |
-
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
500 |
-
|
501 |
-
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
502 |
-
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
503 |
-
self.filter_channels
|
504 |
-
)
|
505 |
-
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
506 |
-
|
507 |
-
x1, logabsdet = piecewise_rational_quadratic_transform(
|
508 |
-
x1,
|
509 |
-
unnormalized_widths,
|
510 |
-
unnormalized_heights,
|
511 |
-
unnormalized_derivatives,
|
512 |
-
inverse=reverse,
|
513 |
-
tails="linear",
|
514 |
-
tail_bound=self.tail_bound,
|
515 |
-
)
|
516 |
-
|
517 |
-
x = torch.cat([x0, x1], 1) * x_mask
|
518 |
-
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
519 |
-
if not reverse:
|
520 |
-
return x, logdet
|
521 |
-
else:
|
522 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
infer_pack/transforms.py
DELETED
@@ -1,193 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn import functional as F
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
|
7 |
-
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
8 |
-
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
9 |
-
DEFAULT_MIN_DERIVATIVE = 1e-3
|
10 |
-
|
11 |
-
|
12 |
-
def piecewise_rational_quadratic_transform(inputs,
|
13 |
-
unnormalized_widths,
|
14 |
-
unnormalized_heights,
|
15 |
-
unnormalized_derivatives,
|
16 |
-
inverse=False,
|
17 |
-
tails=None,
|
18 |
-
tail_bound=1.,
|
19 |
-
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
20 |
-
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
21 |
-
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
22 |
-
|
23 |
-
if tails is None:
|
24 |
-
spline_fn = rational_quadratic_spline
|
25 |
-
spline_kwargs = {}
|
26 |
-
else:
|
27 |
-
spline_fn = unconstrained_rational_quadratic_spline
|
28 |
-
spline_kwargs = {
|
29 |
-
'tails': tails,
|
30 |
-
'tail_bound': tail_bound
|
31 |
-
}
|
32 |
-
|
33 |
-
outputs, logabsdet = spline_fn(
|
34 |
-
inputs=inputs,
|
35 |
-
unnormalized_widths=unnormalized_widths,
|
36 |
-
unnormalized_heights=unnormalized_heights,
|
37 |
-
unnormalized_derivatives=unnormalized_derivatives,
|
38 |
-
inverse=inverse,
|
39 |
-
min_bin_width=min_bin_width,
|
40 |
-
min_bin_height=min_bin_height,
|
41 |
-
min_derivative=min_derivative,
|
42 |
-
**spline_kwargs
|
43 |
-
)
|
44 |
-
return outputs, logabsdet
|
45 |
-
|
46 |
-
|
47 |
-
def searchsorted(bin_locations, inputs, eps=1e-6):
|
48 |
-
bin_locations[..., -1] += eps
|
49 |
-
return torch.sum(
|
50 |
-
inputs[..., None] >= bin_locations,
|
51 |
-
dim=-1
|
52 |
-
) - 1
|
53 |
-
|
54 |
-
|
55 |
-
def unconstrained_rational_quadratic_spline(inputs,
|
56 |
-
unnormalized_widths,
|
57 |
-
unnormalized_heights,
|
58 |
-
unnormalized_derivatives,
|
59 |
-
inverse=False,
|
60 |
-
tails='linear',
|
61 |
-
tail_bound=1.,
|
62 |
-
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
63 |
-
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
64 |
-
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
65 |
-
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
66 |
-
outside_interval_mask = ~inside_interval_mask
|
67 |
-
|
68 |
-
outputs = torch.zeros_like(inputs)
|
69 |
-
logabsdet = torch.zeros_like(inputs)
|
70 |
-
|
71 |
-
if tails == 'linear':
|
72 |
-
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
73 |
-
constant = np.log(np.exp(1 - min_derivative) - 1)
|
74 |
-
unnormalized_derivatives[..., 0] = constant
|
75 |
-
unnormalized_derivatives[..., -1] = constant
|
76 |
-
|
77 |
-
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
78 |
-
logabsdet[outside_interval_mask] = 0
|
79 |
-
else:
|
80 |
-
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
81 |
-
|
82 |
-
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
83 |
-
inputs=inputs[inside_interval_mask],
|
84 |
-
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
85 |
-
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
86 |
-
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
87 |
-
inverse=inverse,
|
88 |
-
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
89 |
-
min_bin_width=min_bin_width,
|
90 |
-
min_bin_height=min_bin_height,
|
91 |
-
min_derivative=min_derivative
|
92 |
-
)
|
93 |
-
|
94 |
-
return outputs, logabsdet
|
95 |
-
|
96 |
-
def rational_quadratic_spline(inputs,
|
97 |
-
unnormalized_widths,
|
98 |
-
unnormalized_heights,
|
99 |
-
unnormalized_derivatives,
|
100 |
-
inverse=False,
|
101 |
-
left=0., right=1., bottom=0., top=1.,
|
102 |
-
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
103 |
-
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
104 |
-
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
105 |
-
if torch.min(inputs) < left or torch.max(inputs) > right:
|
106 |
-
raise ValueError('Input to a transform is not within its domain')
|
107 |
-
|
108 |
-
num_bins = unnormalized_widths.shape[-1]
|
109 |
-
|
110 |
-
if min_bin_width * num_bins > 1.0:
|
111 |
-
raise ValueError('Minimal bin width too large for the number of bins')
|
112 |
-
if min_bin_height * num_bins > 1.0:
|
113 |
-
raise ValueError('Minimal bin height too large for the number of bins')
|
114 |
-
|
115 |
-
widths = F.softmax(unnormalized_widths, dim=-1)
|
116 |
-
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
117 |
-
cumwidths = torch.cumsum(widths, dim=-1)
|
118 |
-
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
119 |
-
cumwidths = (right - left) * cumwidths + left
|
120 |
-
cumwidths[..., 0] = left
|
121 |
-
cumwidths[..., -1] = right
|
122 |
-
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
123 |
-
|
124 |
-
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
125 |
-
|
126 |
-
heights = F.softmax(unnormalized_heights, dim=-1)
|
127 |
-
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
128 |
-
cumheights = torch.cumsum(heights, dim=-1)
|
129 |
-
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
130 |
-
cumheights = (top - bottom) * cumheights + bottom
|
131 |
-
cumheights[..., 0] = bottom
|
132 |
-
cumheights[..., -1] = top
|
133 |
-
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
134 |
-
|
135 |
-
if inverse:
|
136 |
-
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
137 |
-
else:
|
138 |
-
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
139 |
-
|
140 |
-
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
141 |
-
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
142 |
-
|
143 |
-
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
144 |
-
delta = heights / widths
|
145 |
-
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
146 |
-
|
147 |
-
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
148 |
-
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
149 |
-
|
150 |
-
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
151 |
-
|
152 |
-
if inverse:
|
153 |
-
a = (((inputs - input_cumheights) * (input_derivatives
|
154 |
-
+ input_derivatives_plus_one
|
155 |
-
- 2 * input_delta)
|
156 |
-
+ input_heights * (input_delta - input_derivatives)))
|
157 |
-
b = (input_heights * input_derivatives
|
158 |
-
- (inputs - input_cumheights) * (input_derivatives
|
159 |
-
+ input_derivatives_plus_one
|
160 |
-
- 2 * input_delta))
|
161 |
-
c = - input_delta * (inputs - input_cumheights)
|
162 |
-
|
163 |
-
discriminant = b.pow(2) - 4 * a * c
|
164 |
-
assert (discriminant >= 0).all()
|
165 |
-
|
166 |
-
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
167 |
-
outputs = root * input_bin_widths + input_cumwidths
|
168 |
-
|
169 |
-
theta_one_minus_theta = root * (1 - root)
|
170 |
-
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
171 |
-
* theta_one_minus_theta)
|
172 |
-
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
173 |
-
+ 2 * input_delta * theta_one_minus_theta
|
174 |
-
+ input_derivatives * (1 - root).pow(2))
|
175 |
-
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
176 |
-
|
177 |
-
return outputs, -logabsdet
|
178 |
-
else:
|
179 |
-
theta = (inputs - input_cumwidths) / input_bin_widths
|
180 |
-
theta_one_minus_theta = theta * (1 - theta)
|
181 |
-
|
182 |
-
numerator = input_heights * (input_delta * theta.pow(2)
|
183 |
-
+ input_derivatives * theta_one_minus_theta)
|
184 |
-
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
185 |
-
* theta_one_minus_theta)
|
186 |
-
outputs = input_cumheights + numerator / denominator
|
187 |
-
|
188 |
-
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
189 |
-
+ 2 * input_delta * theta_one_minus_theta
|
190 |
-
+ input_derivatives * (1 - theta).pow(2))
|
191 |
-
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
192 |
-
|
193 |
-
return outputs, logabsdet
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|