Song-Lyrics-Generator / experiment.py
nevoit's picture
Upload 24 files
f5586d9
"""
This file manages the experiments, see the main function for changing the settings
"""
import os
import random
import time
import pandas as pd
from gtts import gTTS
from keras_preprocessing.text import Tokenizer
def main():
"""
This function runs the process of the experiments. Iterates over the parameters and output the results.
:return: Nothing
"""
# Some settings for the files we will use
saved_file_type = 'pkl'
midi_pickle = os.path.join(PICKLES_FOLDER, f"midi.{saved_file_type}")
midi_folder = os.path.join(DATA_PATH, "midi_files")
# Read a pre-trained word2vec dictionary
word2vec_path = os.path.join(PICKLES_FOLDER, f"{WORD2VEC_FILENAME}.{saved_file_type}")
pre_trained = os.path.join(INPUT_FOLDER, f"{GLOVE_FILE_NAME}.txt")
# Get the embedding dictionary that maps between word to a vector
word2vec = get_word2vec(word2vec_path=word2vec_path,
pre_trained=pre_trained,
vector_size=VECTOR_SIZE,
encoding=ENCODING)
# load the training and testing set that provided by the course staff
train_pickle_path = os.path.join(PICKLES_FOLDER, f'{TRAIN_NAME}.{saved_file_type}')
input_train_path = os.path.join(INPUT_FOLDER, INPUT_TRAINING_SET)
training_set = get_input_sets(input_file=input_train_path,
pickle_path=train_pickle_path,
word2vec=word2vec,
midi_folder=midi_folder)
test_pickle_path = os.path.join(PICKLES_FOLDER, f'{TEST_NAME}.{saved_file_type}')
input_test_path = os.path.join(INPUT_FOLDER, INPUT_TESTING_SET)
testing_set = get_input_sets(input_file=input_test_path,
pickle_path=test_pickle_path,
word2vec=word2vec,
midi_folder=midi_folder)
artists = training_set['artists'] + testing_set['artists']
songs_names = training_set['names'] + testing_set['names']
lyrics = training_set['lyrics'] + testing_set['lyrics']
tokenizer = Tokenizer()
tokenizer.fit_on_texts(lyrics)
total_words = len(tokenizer.word_index) + 1
encoded_lyrics_list = tokenizer.texts_to_sequences(lyrics)
index2word = tokenizer.index_word
melodies = get_midi_files(midi_folder=midi_folder,
midi_pickle=midi_pickle,
artists=artists,
names=songs_names)
train_encoded_lyrics_list = encoded_lyrics_list[:len(training_set['lyrics'])]
test_encoded_lyrics_list = encoded_lyrics_list[len(training_set['lyrics']):]
melody_pickle = os.path.join(PICKLES_FOLDER, "melody_data." + saved_file_type)
comb_dict = {'seed': [], 'seq_length': [], 'learning_rate': [], 'batch_size': [], 'epochs': [],
'patience': [], 'min_delta': [], 'melody_method': [], 'model_names': [], 'cos_sim_1_gram': [],
'cos_sim_2_gram': [],
'cos_sim_3_gram': [], 'cos_sim_5_gram': [], 'cos_sim_max_gram': [], 'polarity_diff': [],
'subjectivity_diff': [], 'loss_val': [], 'accuracy': []}
word2vec_matrix = get_word2vec_matrix(total_words=total_words,
index2word=index2word,
word2vec=word2vec,
vector_size=VECTOR_SIZE)
for seed in seeds_list:
for sl in seq_length_list:
sets_dict = create_sets(
train_encoded_lyrics_list=train_encoded_lyrics_list,
test_encoded_lyrics_list=test_encoded_lyrics_list,
total_words=total_words,
seq_length=sl,
validation_set_size=VALIDATION_SET_SIZE,
seed=seed)
training_sequences = sets_dict['train'][1].shape[0] + sets_dict['validation'][1].shape[0]
for melody_method in melody_extraction:
m_train, m_val, m_test = get_melody_data_sets(
train_num=training_sequences,
val_size=VALIDATION_SET_SIZE,
melodies_list=melodies,
sequence_length=sl,
encoded_lyrics_matrix=encoded_lyrics_list,
pkl_file_path=melody_pickle,
seed=seed,
feature_method=melody_method)
melody_feature_vector_size = m_train.shape[2]
for l in learning_rate_list:
for bs in batch_size_list:
for ep in epochs_list:
for pa in patience_list:
for md in min_delta_list:
for u in units_list:
for m_name in model_names_list:
run_combination(comb_dict, sl, bs, ep, index2word, l, md, pa, seed,
testing_set['artists'], melody_method,
testing_set['lyrics'], testing_set['names'], total_words, u,
word2vec,
word2vec_matrix, tokenizer, sets_dict['train'][0],
sets_dict['validation'][0], sets_dict['test'][0], m_train,
m_val, m_test, sets_dict['train'][1],
sets_dict['validation'][1], sets_dict['test'][1], m_name,
melody_feature_vector_size)
if m_name == 'lyrics':
break
# Here we save all the results to a csv file
comb_df = pd.DataFrame.from_dict(comb_dict)
comb_df.to_csv(COMB_PATH, index=False)
def run_combination(comb_dict, seq_length, batch_size, epochs, index2word, learning_rate, min_delta, patience, seed,
test_artists, melody_extraction_method,
test_lyrics, test_names, total_words, units, word2vec, word2vec_matrix, tokenizer, x_train,
x_val, x_test, m_train, m_val, m_test, y_train, y_val, y_test, model_name, melody_num_features):
"""
This function runs a combination with a specific settings and training or testing set
:param melody_extraction_method: The method used to extract melody features (naive or with meta data)
:param comb_dict: dictionary of all the results
:param seq_length: this is the input sequence length we used for the LSTM model
:param batch_size: the batch size for the model
:param epochs: number of epochs for the model
:param index2word: a dictionary maps between index and words.
:param learning_rate: learning rate for the model
:param min_delta: minimum delta for early stopping of the model
:param patience: patience fo the early stopping of the model
:param seed: for the random state
:param test_artists: list of artist in the training set
:param test_lyrics: list of lyrics in the training set
:param test_names: list of songs name in the training set
:param total_words: total size of the vocabulary
:param units: number of LSTM units
:param word2vec: dictionary maps between a word and a vector
:param word2vec_matrix: a matrix of words (rows) and vectors (columns) of the word2vec
:param tokenizer: Tokenizer object
:param x_train: lyrics training set
:param x_val: lyrics validation set
:param x_test: lyrics testing xet
:param m_train: melody training set
:param m_val: melody validation set
:param m_test: melody testing set
:param y_train: training output words
:param y_val: validation output words
:param y_test: testing output words
:param model_name: the name of the model we want to use in this function
:param melody_num_features: size of the melody vector
:return: Nothing
"""
model_save_type = 'h5' # file type
initialize_seed(seed) # files paths
parameters_name = f'seq_lens_{seq_length}_seed_{seed}_u_{units}_lr_{learning_rate}_bs_{batch_size}_ep_{epochs}_' \
f'val_{VALIDATION_SET_SIZE}_pa_{patience}_md_{min_delta}_mn_{model_name}'
if not model_name == 'lyrics':
parameters_name += f'_fm_{melody_extraction_method}'
# A path for the weights
load_weights_path = os.path.join(WEIGHTS_FOLDER, f'weights_{parameters_name}.{model_save_type}')
model = None
if model_name == 'lyrics':
model = LSTMLyrics(seed=seed,
loss=LOSS,
metrics=METRICS,
optimizer=OPTIMIZER,
learning_rate=learning_rate,
total_words=total_words,
seq_length=seq_length,
vector_size=VECTOR_SIZE,
word2vec_matrix=word2vec_matrix,
units=units)
elif model_name == 'melodies_lyrics':
x_train = [x_train, m_train]
x_val = [x_val, m_val]
x_test = [x_test, m_test]
model = LSTMLyricsMelodies(seed=seed,
loss=LOSS,
metrics=METRICS,
optimizer=OPTIMIZER,
learning_rate=learning_rate,
total_words=total_words,
seq_length=seq_length,
vector_size=VECTOR_SIZE,
word2vec_matrix=word2vec_matrix,
units=units,
melody_num_features=melody_num_features)
model.fit(weights_file=load_weights_path,
batch_size=batch_size,
epochs=epochs,
patience=patience,
min_delta=min_delta,
x_train=x_train,
y_train=y_train,
x_val=x_val,
y_val=y_val)
loss_val, accuracy = model.evaluate(x_test=x_test, y_test=y_test, batch_size=batch_size)
print(f'Loss on Testing set: {loss_val}')
print(f'Accuracy on Testing set: {accuracy}')
all_original_lyrics, all_generated_lyrics = generate_lyrics(
model_name=model_name,
word_index=index2word,
seq_length=seq_length,
model=model,
tokenizer=tokenizer,
artists=test_artists,
lyrics=test_lyrics,
names=test_names,
word2vec=word2vec,
melodies=m_test
)
cos_sim_1_gram = calculate_cosine_similarity_n_gram(all_generated_lyrics=all_generated_lyrics,
all_original_lyrics=all_original_lyrics,
n=1,
word2vec=word2vec)
print(f'Mean Cosine Similarity (1-gram): {cos_sim_1_gram}')
cos_sim_2_gram = calculate_cosine_similarity_n_gram(all_generated_lyrics=all_generated_lyrics,
all_original_lyrics=all_original_lyrics,
n=2,
word2vec=word2vec)
print(f'Mean Cosine Similarity (2-gram): {cos_sim_2_gram}')
cos_sim_3_gram = calculate_cosine_similarity_n_gram(all_generated_lyrics=all_generated_lyrics,
all_original_lyrics=all_original_lyrics,
n=3,
word2vec=word2vec)
print(f'Mean Cosine Similarity (3-gram): {cos_sim_3_gram}')
cos_sim_5_gram = calculate_cosine_similarity_n_gram(all_generated_lyrics=all_generated_lyrics,
all_original_lyrics=all_original_lyrics,
n=5,
word2vec=word2vec)
print(f'Mean Cosine Similarity (5-gram): {cos_sim_5_gram}')
cos_sim = calculate_cosine_similarity(all_generated_lyrics=all_generated_lyrics,
all_original_lyrics=all_original_lyrics,
word2vec=word2vec)
print(f'Mean Cosine Similarity (Max-gram): {cos_sim}')
pol_dif = get_polarity_diff(all_generated_lyrics=all_generated_lyrics, all_original_lyrics=all_original_lyrics)
print(f'Mean Polarity Difference: {pol_dif}')
subj_dif = get_subjectivity_diff(all_generated_lyrics=all_generated_lyrics, all_original_lyrics=all_original_lyrics)
print(f'Mean Subjectivity Difference: {subj_dif}')
update_comb_dict(batch_size, comb_dict, cos_sim, cos_sim_1_gram, cos_sim_2_gram, cos_sim_3_gram, cos_sim_5_gram,
epochs, learning_rate, min_delta, model_name, patience, pol_dif, seed, seq_length, subj_dif,
melody_extraction_method, loss_val, accuracy)
def update_comb_dict(batch_size, comb_dict, cos_sim, cos_sim_1_gram, cos_sim_2_gram, cos_sim_3_gram, cos_sim_5_gram,
epochs, learning_rate, min_delta, model_name, patience, pol_dif, seed, seq_length, subj_dif,
melody_extraction_method, loss_val, accuracy):
"""
This function update the combination dictionary to write to csv
:param accuracy: accuracy on the testing set
:param loss_val: loss on the testing set
:param batch_size: the batch size for the model
:param comb_dict: the results dictionary
:param cos_sim: the similarity score between the original and the generated sentence
:param cos_sim_1_gram: the similarity score between each 1 gram of original and the generated sentence
:param cos_sim_2_gram: the similarity score between each 2 gram of original and the generated sentence
:param cos_sim_3_gram: the similarity score between each 3 gram of original and the generated sentence
:param cos_sim_5_gram: the similarity score between each 5 gram of original and the generated sentence
:param epochs: number of epochs for the model
:param learning_rate: learning rate for the model
:param min_delta: minimum delta for early stopping of the model
:param model_name: The model name we want to test
:param patience: patience fo the early stopping of the model
:param pol_dif: the difference polarity score between the original and the generated sentence
:param seed: for the random state
:param seq_length: length of the given sequences
:param subj_dif: the difference subjective score between the original and the generated sentence
:param melody_extraction_method: The method used to extract melody features (naive or with meta data)
:return: Nothing
"""
comb_dict['seed'].append(seed)
comb_dict['seq_length'].append(seq_length)
comb_dict['learning_rate'].append(learning_rate)
comb_dict['batch_size'].append(batch_size)
comb_dict['epochs'].append(epochs)
comb_dict['patience'].append(patience)
comb_dict['min_delta'].append(min_delta)
comb_dict['model_names'].append(model_name)
comb_dict['cos_sim_1_gram'].append(cos_sim_1_gram)
comb_dict['cos_sim_2_gram'].append(cos_sim_2_gram)
comb_dict['cos_sim_3_gram'].append(cos_sim_3_gram)
comb_dict['cos_sim_5_gram'].append(cos_sim_5_gram)
comb_dict['cos_sim_max_gram'].append(cos_sim)
comb_dict['polarity_diff'].append(pol_dif)
comb_dict['subjectivity_diff'].append(subj_dif)
comb_dict['melody_method'].append(melody_extraction_method)
comb_dict['loss_val'].append(loss_val)
comb_dict['accuracy'].append(accuracy)
def generate_song_given_sequence(model_name, model, tokenizer, seed_words, vector_of_indices, required_length, artist,
name, index_value, melodies_song):
"""
This function generates a new song
:param model_name: model name
:param melodies_song: a matrix contains the melodies of this song
:param model:
:param tokenizer:
:param seed_words:
:param vector_of_indices:
:param required_length:
:param artist:
:param name:
:param index_value:
:return: Nothing
"""
new_song_lyrics: list = [seed_words]
for word_i in range(required_length):
if model_name == 'lyrics': # Different input for lyrics alone and lyrics and melodies.
voc_prob = model.predict(vector_of_indices)
else:
melody_seq = np.expand_dims(a=melodies_song[word_i], axis=0)
voc_prob = model.predict([vector_of_indices, melody_seq])
voc_prob = voc_prob.T # Transpose the array
word_index_array = np.arange(voc_prob.size)
# This line select a word based on the predicted probabilities
index_of_selected_word = random.choices(word_index_array, k=1, weights=voc_prob)
selected_word = find_word_by_index(word_index=index_of_selected_word[0], tokenizer=tokenizer)
index_of_selected_word_array = np.array(np.array(index_of_selected_word).reshape(1, 1))
vector_of_indices = np.append(vector_of_indices, index_of_selected_word_array, axis=1)
remove_index = 0
vector_of_indices = np.delete(vector_of_indices, remove_index, 1)
new_song_lyrics.append(selected_word)
final_text = ' '.join(new_song_lyrics)
if WRITE_TO_MP3:
lyrics_to_mp3 = gTTS(text=final_text, lang='en', slow=False)
lyrics_to_mp3.save(os.path.join(OUTPUT_FOLDER, f"{artist}_{name}_{index_value}.mp3"))
return final_text
def find_word_by_index(word_index, tokenizer):
"""
This function returns the word given the index
:param word_index: the index of the word we want to find
:param tokenizer: object
:return: the word at that index
"""
for word, index in tokenizer.word_index.items():
if index == word_index:
return word
def generate_lyrics(model_name, word_index, seq_length, model, tokenizer, artists, lyrics, names,
word2vec, melodies) -> (list, list):
"""
This function creates lyrics for each song in the testing set
:param melodies: a 3D array that maps sequence and the melodies features (2D array (sequence size, melody vector)).
:param model_name: The model name we want to test
:param word_index: A dictionary maps between index to word
:param seq_length: length of the given sequences
:param model: the learned model
:param tokenizer: the tokenizer object
:param artists: list of artists in the testing set
:param lyrics: list of lyrics in the testing set
:param names: list of song names in the testing set
:param word2vec: A dictionary maps between word to embedding vector
:return: lists of original and generated songs and
"""
all_original_lyrics = []
all_generated_lyrics = []
start_index_melody = 0
for artist, name, lyrics in zip(artists, names, lyrics):
print('-' * 100)
print(f'Original lyrics for {artist} - {name} are: "{lyrics}"')
relevant_words_in_song = []
find_relevant_words(lyrics, relevant_words_in_song, word2vec)
number_of_seq = len(relevant_words_in_song) - seq_length + 1
end_index_melody = start_index_melody + number_of_seq
melodies_song = melodies[start_index_melody:end_index_melody, :, :]
required_length = len(relevant_words_in_song) - (seq_length * TESTING_SEED_TEXT_PER_SONG)
for seed_index in range(TESTING_SEED_TEXT_PER_SONG):
# We select three different word\sentence as seed for the new song
starting_index = 0 + seed_index * seq_length
ending_index = starting_index + seq_length
song_first_word_in_word2vec = relevant_words_in_song[starting_index:ending_index]
song_first_indices = []
for word in song_first_word_in_word2vec:
word_i = [k for k, v in word_index.items() if v == word][0]
song_first_indices.append(word_i)
encoded_test = np.asarray(song_first_indices).reshape((1, seq_length))
seed_text = ' '.join(song_first_word_in_word2vec)
generated_text = generate_song_given_sequence(model_name, model, tokenizer, seed_text, encoded_test,
required_length, artist, name, seed_index, melodies_song)
gen_list = generated_text.split(' ')
all_generated_lyrics.append(gen_list.copy()[seq_length:])
original_starting_index = starting_index + seq_length
original_ending_index = original_starting_index + required_length
original_lyrics = relevant_words_in_song[original_starting_index:original_ending_index]
all_original_lyrics.append(original_lyrics)
gen_list.insert(seq_length, '\n')
generated_text = ' '.join(gen_list)
print(f'Seed text: {generated_text}, required {required_length} words')
print('-' * 100)
start_index_melody = end_index_melody + 1
return all_original_lyrics, all_generated_lyrics
def find_relevant_words(lyrics, selected_words, word2vec):
"""
This loop selects all the relevant words in the pre-defined word2vec
:param lyrics:
:param selected_words:
:param word2vec:
:return:
"""
for word in lyrics.split():
if word in word2vec and word not in selected_words:
selected_words.append(word)
def initialize_seed(seed):
"""
Initialize all relevant environments with the seed.
"""
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
def folder_exists(path):
"""
This function checks if folder path is exists, in case not, the function creates the folder.
:param path: folder path
"""
if not os.path.exists(path):
os.mkdir(path)
if __name__ == '__main__':
# Environment settings
IS_COLAB = (os.name == 'posix')
LOAD_DATA = not (os.name == 'posix')
path_separator = os.path.sep
IS_EXPERIMENT = False
WRITE_TO_MP3 = False
if IS_COLAB:
# the google drive folder we used
DATA_PATH = os.path.sep + os.path.join('content', 'drive', 'My\ Drive', 'datasets', 'midi').replace('\\', '')
IS_EXPERIMENT = True
else:
# locally
from data_loader import get_word2vec
from data_loader import get_input_sets
from data_loader import get_midi_files
from lstm_lyrics import LSTMLyrics
from lstm_melodies_lyrics import LSTMLyricsMelodies
from prepare_data import get_word2vec_matrix
from prepare_data import create_sets
from compute_score import calculate_cosine_similarity
from compute_score import get_polarity_diff
from compute_score import get_subjectivity_diff
from compute_score import calculate_cosine_similarity_n_gram
from extract_melodies_features import *
DATA_PATH = os.path.join('.\\', 'midi')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# PATHS
TRAIN_NAME = 'train'
INPUT_TRAINING_SET = f"lyrics_{TRAIN_NAME}_set.csv"
TEST_NAME = 'test'
INPUT_TESTING_SET = f"lyrics_{TEST_NAME}_set.csv"
OUTPUT_FOLDER = os.path.join(DATA_PATH, 'output_files')
folder_exists(OUTPUT_FOLDER)
INPUT_FOLDER = os.path.join(DATA_PATH, 'input_files')
folder_exists(INPUT_FOLDER)
PICKLES_FOLDER = os.path.join(DATA_PATH, 'pickles')
folder_exists(PICKLES_FOLDER)
WEIGHTS_FOLDER = os.path.join(DATA_PATH, 'weights')
folder_exists(WEIGHTS_FOLDER)
WORD2VEC_FILENAME = 'word2vec'
RESULTS_FILE_NAME = 'results.csv'
COMB_PATH = os.path.join(OUTPUT_FOLDER, RESULTS_FILE_NAME)
GLOVE_FILE_NAME = 'glove.6B.300d'
ENCODING = 'utf-8'
LOSS = 'categorical_crossentropy'
METRICS = ['accuracy']
VECTOR_SIZE = 300
VALIDATION_SET_SIZE = 0.2
TESTING_SEED_TEXT_PER_SONG = 3
OPTIMIZER = 'adam'
if IS_EXPERIMENT: # Experiments settings
seeds_list = [0]
learning_rate_list = [0.01]
batch_size_list = [32, 64]
epochs_list = [10]
patience_list = [0]
min_delta_list = [0.1]
units_list = [256]
seq_length_list = [1, 5, 20]
model_names_list = ['melodies_lyrics', 'lyrics']
melody_extraction = ['naive']
# melody_extraction = ['naive', 'with_meta_features']
else: # Final settings
seeds_list = [0]
learning_rate_list = [0.01]
batch_size_list = [32]
epochs_list = [10]
patience_list = [0]
min_delta_list = [0.1]
units_list = [256]
seq_length_list = [1]
model_names_list = ['melodies_lyrics']
melody_extraction = ['naive']
# model_names_list = ['melodies_lyrics', 'lyrics']
# melody_extraction = ['naive', 'with_meta_features']
start_time = time.time()
main()
print("--- %s seconds ---" % (time.time() - start_time))