File size: 2,301 Bytes
de87a65
 
9414a6b
 
de87a65
 
 
 
9414a6b
 
 
 
de87a65
9414a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de87a65
 
 
 
 
 
9414a6b
de87a65
9414a6b
 
 
 
de87a65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9414a6b
 
 
 
 
 
 
 
 
 
de87a65
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Hi - Gokul
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: hi
      split: None
      args: 'config: hi, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 32.38381444171675
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/neuronbit-tech/hindi-test-finetune-whisper-small/runs/c1c1hfzg)
# Whisper Small Hi - Gokul

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4393
- Wer: 32.3838

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0919        | 2.4450 | 1000 | 0.2983          | 35.0885 |
| 0.0204        | 4.8900 | 2000 | 0.3562          | 33.6705 |
| 0.0014        | 7.3350 | 3000 | 0.4152          | 32.4134 |
| 0.0005        | 9.7800 | 4000 | 0.4393          | 32.3838 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3