--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer model-index: - name: uaspeech-large-finetune-shorter-evals results: [] --- [Visualize in Weights & Biases](https://wandb.ai/neuronbit-tech/finetune_uaspeech_wandb_shorter_evals/runs/dm69pjms) # uaspeech-large-finetune-shorter-evals This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.316 | 0.0828 | 200 | 0.3907 | | 0.2478 | 0.1242 | 300 | 0.3199 | | 0.2129 | 0.1656 | 400 | 0.3282 | | 0.1667 | 0.2070 | 500 | 0.3194 | | 0.1534 | 0.2483 | 600 | 0.3327 | | 0.1208 | 0.2897 | 700 | 0.2923 | | 0.0987 | 0.3311 | 800 | 0.3048 | | 0.103 | 0.3725 | 900 | 0.2841 | | 0.0893 | 0.4139 | 1000 | 0.2759 | | 0.0757 | 0.4553 | 1100 | 0.2625 | | 0.068 | 0.4967 | 1200 | 0.2784 | | 0.0608 | 0.5381 | 1300 | 0.2813 | | 0.0404 | 0.5795 | 1400 | 0.2739 | | 0.0422 | 0.6209 | 1500 | 0.2762 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3