--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer model-index: - name: uaspeech-large-finetune-long-evals-30-11-11AM results: [] --- [Visualize in Weights & Biases](https://wandb.ai/neuronbit-tech/finetune_uaspeech_wandb_long_evals_30_11_11AM/runs/ce0ctgl5) # uaspeech-large-finetune-long-evals-30-11-11AM This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2252 | 0.2070 | 500 | 0.3504 | | 0.1217 | 0.4139 | 1000 | 0.3028 | | 0.071 | 0.6209 | 1500 | 0.3409 | | 0.0581 | 0.8278 | 2000 | 0.3390 | | 0.0279 | 1.0348 | 2500 | 0.3261 | | 0.0132 | 1.2417 | 3000 | 0.3258 | | 0.006 | 1.4487 | 3500 | 0.3280 | | 0.0077 | 1.6556 | 4000 | 0.3553 | | 0.0094 | 1.8626 | 4500 | 0.3516 | | 0.0043 | 2.0695 | 5000 | 0.3481 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3