File size: 3,055 Bytes
63ed89b 72a912c 63ed89b 72a912c 63ed89b 72a912c 63ed89b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: speech-synth-large-finetune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/neuronbit-tech/finetune_speech_synth_imperative_train/runs/8cz6mjjm)
# speech-synth-large-finetune
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4259
- Wer: 16.8396
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.1313 | 0.7800 | 250 | 0.4953 | 30.7145 |
| 0.0531 | 1.5585 | 500 | 0.4647 | 28.1055 |
| 0.0269 | 2.3370 | 750 | 0.4448 | 19.9526 |
| 0.0101 | 3.1154 | 1000 | 0.4392 | 23.0062 |
| 0.0064 | 3.8955 | 1250 | 0.4053 | 22.2947 |
| 0.0057 | 4.6739 | 1500 | 0.4148 | 19.3003 |
| 0.0044 | 5.4524 | 1750 | 0.4028 | 17.9958 |
| 0.0047 | 6.2309 | 2000 | 0.4125 | 19.0631 |
| 0.003 | 7.0094 | 2250 | 0.3979 | 17.7883 |
| 0.0038 | 7.7894 | 2500 | 0.3923 | 20.5455 |
| 0.0 | 8.5679 | 2750 | 0.4077 | 17.6401 |
| 0.0002 | 9.3463 | 3000 | 0.4050 | 17.3733 |
| 0.0009 | 10.1248 | 3250 | 0.4101 | 17.0471 |
| 0.0005 | 10.9048 | 3500 | 0.4227 | 17.1954 |
| 0.0 | 11.6833 | 3750 | 0.4217 | 17.2250 |
| 0.0002 | 12.4618 | 4000 | 0.4241 | 17.0471 |
| 0.0 | 13.2402 | 4250 | 0.4239 | 16.9582 |
| 0.0005 | 14.0187 | 4500 | 0.4250 | 16.6617 |
| 0.0 | 14.7988 | 4750 | 0.4254 | 16.8396 |
| 0.0001 | 15.5772 | 5000 | 0.4259 | 16.8396 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|