--- tags: - w4a16 - int4 - vllm - audio license: apache-2.0 license_link: https://huggingface.co./datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: openai/whisper-large-v2 library_name: transformers --- # whisper-large-v2-quantized.w4a16 ## Model Overview - **Model Architecture:** whisper-large-v2 - **Input:** Audio-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Activation quantization:** FP16 - **Release Date:** 1/31/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2). ### Model Optimizations This model was obtained by quantizing the weights of [openai/whisper-large-v2](https://huggingface.co./openai/whisper-large-v2) to INT4 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.audio import AudioAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/whisper-large-v2-W4A16-G128", max_model_len=448, max_num_seqs=400, limit_mm_per_prompt={"audio": 1}, ) # prepare inputs inputs = { # Test explicit encoder/decoder prompt "encoder_prompt": { "prompt": "", "multi_modal_data": { "audio": AudioAsset("winning_call").audio_and_sample_rate, }, }, "decoder_prompt": "<|startoftranscript|>", } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.0, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. ```python import torch from datasets import load_dataset from transformers import WhisperProcessor from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from llmcompressor.transformers.tracing import TraceableWhisperForConditionalGeneration # Select model and load it. model_id = "openai/whisper-large-v2" model = TraceableWhisperForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto", ) processor = WhisperProcessor.from_pretrained(model_id) # Configure processor the dataset task. processor.tokenizer.set_prefix_tokens(language="en", task="transcribe") # Select calibration dataset. DATASET_ID = "MLCommons/peoples_speech" DATASET_SUBSET = "test" DATASET_SPLIT = "test" # Select number of samples. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset( DATASET_ID, DATASET_SUBSET, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]", trust_remote_code=True, ) # Preprocess and Tokenize inputs. def preprocess_and_tokenize(example): audio = example["audio"]["array"] sampling_rate = example["audio"]["sampling_rate"] text = " " + example["text"].capitalize() audio_inputs = processor( audio=audio, sampling_rate=sampling_rate, return_tensors="pt", ) text_inputs = processor( text=text, add_special_tokens=True, return_tensors="pt" ) text_inputs["decoder_input_ids"] = text_inputs["input_ids"] del text_inputs["input_ids"] return dict(**audio_inputs, **text_inputs) ds = ds.map(preprocess_and_tokenize, remove_columns=ds.column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} # Recipe recipe = GPTQModifier(targets="Linear", scheme="W4A16", ignore=["lm_head"]) # Apply algorithms. SAVE_DIR = model_id.split("/")[1] + "-W4A16-G128" oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, data_collator=data_collator, output_dir=SAVE_DIR, ) ``` ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} }