--- base_model: teknium/OpenHermes-2.5-Mistral-7B inference: true model_type: mistral quantized_by: mgoin tags: - nm-vllm - sparse --- ## OpenHermes-2.5-Mistral-7B-pruned50 This repo contains model files for [OpenHermes-2.5-Mistral-7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B) optimized for [nm-vllm](https://github.com/neuralmagic/nm-vllm), a high-throughput serving engine for compressed LLMs. This model was pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [nm-vllm](https://github.com/neuralmagic/nm-vllm) for fast inference and low memory-usage: ```bash pip install nm-vllm[sparse] ``` Run in a Python pipeline for local inference: ```python from vllm import LLM, SamplingParams model = LLM("nm-testing/OpenHermes-2.5-Mistral-7B-pruned50", sparsity="sparse_w16a16") prompt = "How to make banana bread?" formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant" sampling_params = SamplingParams(max_tokens=100) outputs = model.generate(formatted_prompt, sampling_params=sampling_params) print(outputs[0].outputs[0].text) """ Here is a simple recipe for making banana bread: Ingredients: - 3 ripe bananas - 2 eggs - 1/2 cup of sugar - 1/2 cup of butter - 2 cups of flour - 1 teaspoon baking powder - 2 teaspoons of baking soda Instructions: 1. Preheat your oven at 350 degree Fahrenant. """ ``` ## Prompt template ``` <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. Install [SparseML](https://github.com/neuralmagic/sparseml): ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" ``` Replace the recipe as you like and run this one-shot compression script to apply SparseGPT: ```python import sparseml.transformers original_model_name = "teknium/OpenHermes-2.5-Mistral-7B" calibration_dataset = "open_platypus" output_directory = "output/" recipe = """ test_stage: obcq_modifiers: SparseGPTModifier: sparsity: 0.5 sequential_update: true mask_structure: 0:0 targets: ['re:model.layers.\d*$'] """ # Apply SparseGPT to the model sparseml.transformers.oneshot( model=original_model_name, dataset=calibration_dataset, recipe=recipe, output_dir=output_directory, ) ``` ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)