---
license: apache-2.0
base_model: mistralai/Mistral-7B-Instruct-v0.3
model-index:
- name: Mistral-7B-Instruct-v0.3-GPTQ-4bit
results:
# AI2 Reasoning Challenge (25-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
name: normalized accuracy
value: 63.40
# HellaSwag (10-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
name: normalized accuracy
value: 84.04
# TruthfulQA (0-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.48
# GSM8k (5-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 45.41
# MMLU (5-Shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 61.07
# Winogrande (5-shot)
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
name: accuracy
value: 79.08
---
# Model Card for Mistral-7B-Instruct-v0.3 quantized to 4bit weights
- Weight-only quantization of [Mistral-7B-Instruct-v0.3](mistralai/Mistral-7B-Instruct-v0.3) via GPTQ to 4bits with group_size=128
- GPTQ optimized for 99.75% accuracy recovery relative to the unquantized model
# Open LLM Leaderboard evaluation scores
| | Mistral-7B-Instruct-v0.3 | Mistral-7B-Instruct-v0.3-GPTQ-4bit
(this model) |
| :------------------: | :----------------------: | :------------------------------------------------: |
| arc-c
25-shot | 63.48 | 63.40 |
| mmlu
5-shot | 61.13 | 60.89 |
| hellaswag
10-shot | 84.49 | 84.04 |
| winogrande
5-shot | 79.16 | 79.08 |
| gsm8k
5-shot | 43.37 | 45.41 |
| truthfulqa
0-shot | 59.65 | 57.48 |
| **Average
Accuracy** | **65.21** | **65.05** |
| **Recovery** | **100%** | **99.75%** |
# vLLM Inference Performance
This model is ready for optimized inference using the Marlin mixed-precision kernels in vLLM: https://github.com/vllm-project/vllm
Simply start this model as an inference server with:
```bash
python -m vllm.entrypoints.openai.api_server --model neuralmagic/Mistral-7B-Instruct-v0.3-GPTQ-4bit
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60466e4b4f40b01b66151416/SC_tYXjoS3yIoOYtfqZ2E.png)