mwitiderrick commited on
Commit
2ed7dfd
1 Parent(s): e75fbb8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: GeneZC/MiniChat-1.5-3B
3
+ inference: false
4
+ model_type: llama
5
+ prompt_template: |
6
+ <s> [|User|]\n
7
+ {prompt}</s>
8
+ [|Assistant|]\n
9
+ quantized_by: mwitiderrick
10
+ tags:
11
+ - deepsparse
12
+ ---
13
+ # MiniChat-3B - DeepSparse
14
+ This repo contains model files for [MiniChat-1.5-3B](https://huggingface.co/GeneZC/MiniChat-1.5-3B) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
+
16
+ This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
+ ## Inference
18
+ Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs:
19
+ ```bash
20
+ pip install deepsparse-nightly[llm]
21
+ ```
22
+ Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
23
+ ```python
24
+ from deepsparse import TextGeneration
25
+
26
+ prompt = "How to get in a good university?"
27
+ formatted_prompt = f"<s> [|User|]\n{prompt}</s>[|Assistant|]\n"
28
+
29
+ model = TextGeneration(model="hf:nm-testing/MiniChat-1.5-3B-pruned50-quant-ds")
30
+
31
+ print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
32
+ """
33
+ As an AI, I don't have personal experiences or opinions, but I can provide you with some general advice on how to get into a good university. Here are some tips to consider:
34
+
35
+
36
+ 1. Academic performance: A good university requires good academic performance. This means you need to maintain a good GPA (grade point average) and achieve high marks in your courses. To do this, you need to put in the effort to learn and understand the course material.
37
+
38
+ 2. Pursue a diverse range of courses: A good university student should not limit themselves to just one area of study. They should take courses in various fields that interest them. This will help them develop a wide range of skills and knowledge.
39
+
40
+ 3. Networking: A good university student should network with others in their courses and beyond. This can be done through attending events like guest lectures, group meetings, and social events.
41
+
42
+ 4. Be proactive
43
+ """
44
+ ```
45
+
46
+ ## Prompt template
47
+ ```
48
+
49
+ <s> [|User|]\n
50
+ {prompt}
51
+ </s>[|Assistant|]\n
52
+ ```
53
+ ## Sparsification
54
+ For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
55
+
56
+ ```bash
57
+ git clone https://github.com/neuralmagic/sparseml
58
+ pip install -e "sparseml[transformers]"
59
+ python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py GeneZC/MiniChat-3B open_platypus --recipe recipe.yaml --save True
60
+ python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
61
+ cp deployment/model.onnx deployment/model-orig.onnx
62
+ ```
63
+ Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
64
+ ```python
65
+ import os
66
+ import onnx
67
+ from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
68
+ input_file = "deployment/model-orig.onnx"
69
+ output_file = "deployment/model.onnx"
70
+ model = onnx.load(input_file, load_external_data=False)
71
+ model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
72
+ onnx.save(model, output_file)
73
+ print(f"Modified model saved to: {output_file}")
74
+ ```
75
+ Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models.
76
+ ## Slack
77
+
78
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)