File size: 1,784 Bytes
7ae33df d10fb27 7ae33df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
base_model: nepp1d0/prot_bert-finetuned-smiles-bindingDB
model-index:
- name: prot_bert_classification_finetuned_training_script_trial
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prot_bert_classification_finetuned_training_script_trial
This model is a fine-tuned version of [nepp1d0/prot_bert-finetuned-smiles-bindingDB](https://huggingface.co./nepp1d0/prot_bert-finetuned-smiles-bindingDB) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6847
- Accuracy: 0.86
- F1: 0.9247
- Precision: 1.0
- Recall: 0.86
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 3
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.6929 | 1.0 | 25 | 0.6847 | 0.86 | 0.9247 | 1.0 | 0.86 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|