--- base_model: apple/mobilevit-xx-small datasets: - webdataset library_name: transformers license: other metrics: - accuracy - f1 - precision - recall tags: - generated_from_trainer model-index: - name: frost-mobile-apple__mobilevit-xx-small-v2024-10-22 results: - task: type: image-classification name: Image Classification dataset: name: webdataset type: webdataset config: default split: train args: default metrics: - type: accuracy value: 0.9475555555555556 name: Accuracy - type: f1 value: 0.8700440528634361 name: F1 - type: precision value: 0.8681318681318682 name: Precision - type: recall value: 0.8719646799116998 name: Recall --- # frost-mobile-apple__mobilevit-xx-small-v2024-10-22 This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co./apple/mobilevit-xx-small) on the webdataset dataset. It achieves the following results on the evaluation set: - Loss: 0.1381 - Accuracy: 0.9476 - F1: 0.8700 - Precision: 0.8681 - Recall: 0.8720 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1927 | 1.7544 | 100 | 0.1470 | 0.9422 | 0.8565 | 0.8565 | 0.8565 | | 0.1601 | 3.5088 | 200 | 0.1499 | 0.9444 | 0.8616 | 0.8644 | 0.8587 | | 0.1544 | 5.2632 | 300 | 0.1536 | 0.9391 | 0.8493 | 0.8465 | 0.8521 | | 0.207 | 7.0175 | 400 | 0.1374 | 0.9436 | 0.8575 | 0.8721 | 0.8433 | | 0.1709 | 8.7719 | 500 | 0.1443 | 0.9431 | 0.8587 | 0.8587 | 0.8587 | | 0.1548 | 10.5263 | 600 | 0.1572 | 0.9387 | 0.8490 | 0.8416 | 0.8565 | | 0.1802 | 12.2807 | 700 | 0.1436 | 0.9458 | 0.8656 | 0.8637 | 0.8675 | | 0.1455 | 14.0351 | 800 | 0.1442 | 0.9467 | 0.8667 | 0.8725 | 0.8609 | | 0.1514 | 15.7895 | 900 | 0.1500 | 0.9422 | 0.8571 | 0.8534 | 0.8609 | | 0.1368 | 17.5439 | 1000 | 0.1391 | 0.9489 | 0.8718 | 0.8806 | 0.8631 | | 0.1515 | 19.2982 | 1100 | 0.1370 | 0.9476 | 0.8700 | 0.8681 | 0.8720 | | 0.1372 | 21.0526 | 1200 | 0.1393 | 0.9458 | 0.8644 | 0.8702 | 0.8587 | | 0.1397 | 22.8070 | 1300 | 0.1359 | 0.9498 | 0.8746 | 0.8795 | 0.8698 | | 0.1398 | 24.5614 | 1400 | 0.1352 | 0.9489 | 0.8740 | 0.8674 | 0.8808 | | 0.1276 | 26.3158 | 1500 | 0.1381 | 0.9476 | 0.8700 | 0.8681 | 0.8720 | | 0.1519 | 28.0702 | 1600 | 0.1380 | 0.9462 | 0.8666 | 0.8656 | 0.8675 | | 0.1479 | 29.8246 | 1700 | 0.1343 | 0.9498 | 0.8754 | 0.8744 | 0.8764 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1