File size: 2,042 Bytes
b4b235c
266939f
 
 
 
 
 
 
 
b4b235c
 
266939f
 
b4b235c
266939f
b4b235c
266939f
 
 
b4b235c
266939f
b4b235c
266939f
b4b235c
266939f
b4b235c
266939f
b4b235c
266939f
b4b235c
266939f
b4b235c
266939f
b4b235c
266939f
b4b235c
266939f
 
 
 
 
 
 
 
 
 
 
 
b4b235c
266939f
b4b235c
266939f
 
 
 
 
 
 
 
 
 
 
 
b4b235c
 
266939f
b4b235c
266939f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: pgd_mistral_8bits_lr4e-05_alpha16_rk8_do0.0_wd1.0e-05
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pgd_mistral_8bits_lr4e-05_alpha16_rk8_do0.0_wd1.0e-05

This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8732

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.9721        | 0.9867 | 37   | 2.1189          |
| 1.525         | 2.0    | 75   | 1.0950          |
| 1.0021        | 2.9867 | 112  | 0.9615          |
| 0.9104        | 4.0    | 150  | 0.9231          |
| 0.9014        | 4.9867 | 187  | 0.8953          |
| 0.8562        | 6.0    | 225  | 0.8828          |
| 0.8702        | 6.9867 | 262  | 0.8774          |
| 0.8411        | 8.0    | 300  | 0.8756          |
| 0.8592        | 8.9867 | 337  | 0.8747          |
| 0.8329        | 9.8667 | 370  | 0.8732          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1