Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -202.98 +/- 120.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07ed6c1000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07ed6c1090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07ed6c1120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07ed6c11b0>", "_build": "<function ActorCriticPolicy._build at 0x7f07ed6c1240>", "forward": "<function ActorCriticPolicy.forward at 0x7f07ed6c12d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f07ed6c1360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07ed6c13f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f07ed6c1480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07ed6c1510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07ed6c15a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07ed6c1630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f07ed6b3a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688593978600697236, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPggz5SHbg/aadFP6aDU765HIK+FYRjvAAAAAAAAAAAo3WAPoBUhD+CqSc+ds5Iv33SvT6oUGI+AAAAAAAAAADllJe+6ha8PzLJOb+Mg2S+TzlSvr6vUL4AAAAAAAAAAOZNBD8lIqQ/uxVOPwXyNr92dzq+1vgcvQAAAAAAAAAAADhjuzffCD++w1A8zcJvv3Q2wLz4OZA9AAAAAAAAAACAhgs9Ll67P2fDLz/MJuM+38wXvQyxy70AAAAAAAAAABR5T7+/NGc+TsFev1Cvqr+WBcU+BQxRPgAAAAAAAAAAzRPwvGczQz/uGRi9yyBwv1kSBr2O3Y29AAAAAAAAAACmlQs+ZqsgPxDGKT6tn3S/c7jSPd9kGj4AAAAAAAAAAM0o7rwNWyU+qxbivGltsr/02Sa9dd5QvAAAAAAAAAAA4fpVv+vtfD8OqdK/Dcdfv/fcpz/yawI+AAAAAAAAAACzgng/XA5TPjaqwT8UXbe/+ImDv/oY+7wAAAAAAAAAAADO+DxCW1U/sJOgPQJvc7/VK6O9aSgLPQAAAAAAAAAAs0BMvppvdj9kg7e+AO86vykBqL2eCrO9AAAAAAAAAACmBD8+L5vIPvquvT5CAa6/IxIkvwCHjb0AAAAAAAAAAM240bstlLQ/GurvvfXPPr2S2O07Of6MPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFYD8lXzUZyMAWyUS0GMAXSUR0BpyyM3qAz6dX2UKGgGR8BMzRr8BMi9aAdLXWgIR0BpywZZSvTxdX2UKGgGR8Bx6yJEYwZgaAdLdWgIR0BpyydlNDc/dX2UKGgGR8BHVdU0elsQaAdLQGgIR0BpzJBAv+OwdX2UKGgGR8BfSmoBJZntaAdLXGgIR0BpzFD+irT6dX2UKGgGR8Bom/TI/7iyaAdLR2gIR0BpzPyqdYnwdX2UKGgGR8BS4RVQyhzvaAdLQ2gIR0BpzSay8jA0dX2UKGgGR8BmExJPIn0DaAdLSGgIR0BpzW912aDxdX2UKGgGR8BlQQ6+36RAaAdLaGgIR0BpzZflZHNHdX2UKGgGR8BVq8N2C/XYaAdLeGgIR0BpziP+4smOdX2UKGgGR8BcCGWpqASWaAdLQmgIR0Bp0d7WuoxYdX2UKGgGR8BSxahUR3/xaAdLO2gIR0Bp0/mgam4zdX2UKGgGR8BcQvYWcjJNaAdLOWgIR0Bp0+rS3LFGdX2UKGgGR8BehFsk6cRUaAdLbmgIR0Bp1SdWhh6TdX2UKGgGR8BlEyThYNiIaAdLZGgIR0Bp1Rk078vVdX2UKGgGR8BYd+54GD+SaAdLS2gIR0Bp1az5XU6QdX2UKGgGR8B7bx/0/W1/aAdLaGgIR0Bp1iMYMvytdX2UKGgGR8BfBDtCzC1raAdLWWgIR0Bp1dbor4FidX2UKGgGR8BZSNiDujREaAdLcGgIR0Bp1xWgezUrdX2UKGgGR8BgPlSEUTL4aAdLaGgIR0Bp19ZJTVDsdX2UKGgGR8B5zmnIhhYvaAdLbGgIR0Bp2HL9uP3jdX2UKGgGR8Bh89GViWmhaAdLWGgIR0Bp2HBWPtD2dX2UKGgGR8BgF1eruIAPaAdLXmgIR0Bp2QB91EE1dX2UKGgGR8B7+NvxYq5LaAdLamgIR0Bp2VE9dNWVdX2UKGgGR8BQbgaFVT73aAdLP2gIR0Bp2fBDXvphdX2UKGgGR8Bax7n9vS+haAdLkmgIR0Bp3AVuaWondX2UKGgGR8BxIxdNWU8naAdLdWgIR0Bp3FsrNGExdX2UKGgGR8BZe1/H5rP/aAdLQmgIR0Bp3XbAUL2IdX2UKGgGR8BlXHJJXhfjaAdLRWgIR0Bp3kM9bHIZdX2UKGgGR8BjLyJfpljFaAdLPmgIR0Bp3s+TvAoHdX2UKGgGR8BvTl+LFXJYaAdLWWgIR0Bp3yUTtb9qdX2UKGgGR8BySAclw97oaAdLXmgIR0Bp39lwtJ4CdX2UKGgGR8BSue7xusLfaAdLY2gIR0Bp4abvw3HadX2UKGgGR8BciKq4pc5baAdLTWgIR0Bp4Z+2E0zkdX2UKGgGR7/5CD7IkqtpaAdLSGgIR0Bp4nXXiBGydX2UKGgGR8BiT0qx1PnCaAdLZmgIR0Bp4xKL876pdX2UKGgGR8BtpGJm/WUbaAdLUWgIR0Bp4z4DcM3IdX2UKGgGR8BrnqXIEKVqaAdLWGgIR0Bp45FTefqYdX2UKGgGR8Bd947/4qPPaAdLQGgIR0Bp5FcOby6MdX2UKGgGR8Bx6RwGW2PUaAdLcmgIR0Bp5DibUgB+dX2UKGgGR8Bt3iKiwjdIaAdLZWgIR0Bp5RML4N7TdX2UKGgGR8BatP2PDHfeaAdLSWgIR0Bp5cJhOP/8dX2UKGgGR8BhT6Hbh3qzaAdLTmgIR0Bp5y24NI9UdX2UKGgGR8B1OLz9S/CZaAdLbGgIR0Bp52Gj9GZvdX2UKGgGR8Bf98jZ+QU6aAdLV2gIR0Bp6emYSg5BdX2UKGgGR8BTr4j8k2P1aAdLPGgIR0Bp6xyuIRAbdX2UKGgGR8BYOBG+bmU4aAdLQWgIR0Bp60tuk1uSdX2UKGgGR8B4BtffGdZraAdLYGgIR0Bp7COzY287dX2UKGgGR8BjRzFERaouaAdLZ2gIR0Bp6/iFTNt7dX2UKGgGR8BXHX0f5k9VaAdLTWgIR0Bp7DfzjFQ3dX2UKGgGR8BeMhdt2s7uaAdLcWgIR0Bp7LriVB2PdX2UKGgGR8B8GfIyTINmaAdLXWgIR0Bp7V2eQMhHdX2UKGgGR8AxwN/OMVDbaAdLXWgIR0Bp7VQuVX3hdX2UKGgGR8Bwiu10DEFXaAdLTmgIR0Bp7lDIBBAwdX2UKGgGR8BQa2luWKMvaAdLQGgIR0Bp78wg1WKedX2UKGgGR8BFlaYNRWLhaAdLZGgIR0Bp7/+qBErodX2UKGgGR8BhCy0BwMpgaAdLW2gIR0Bp8O5QP7N0dX2UKGgGR8BV8/AO8TSLaAdLPGgIR0Bp8k6xPfsNdX2UKGgGR8Bt+mB6KLsKaAdLYWgIR0Bp8qbF0gbIdX2UKGgGR8Bmr8q6OHWSaAdLb2gIR0Bp8s3Kji4sdX2UKGgGR7/dzSThYNiIaAdLWmgIR0Bp81Brvb48dX2UKGgGR8BExT5wfhddaAdLQmgIR0Bp8/4yoGY8dX2UKGgGR8BYTSzTnaFmaAdLPGgIR0Bp9lxIatLddX2UKGgGR8BZ3pvcafjCaAdLQWgIR0Bp9jLOiWVvdX2UKGgGR8BrdbBqKxcFaAdLUWgIR0Bp9sBZIQOGdX2UKGgGR8Bdrn6/IsAeaAdLTmgIR0Bp98ZccENfdX2UKGgGR8BPH3BpHqeLaAdLPmgIR0Bp+CJGe+VUdX2UKGgGR8BgHM/MW43FaAdLZWgIR0Bp+KufVZs9dX2UKGgGR8BdqOearmyPaAdLPGgIR0Bp+hDkU9IPdX2UKGgGR8BiIFsxfv4NaAdLZ2gIR0Bp+l5nlGPQdX2UKGgGR8Bp24te2NNraAdLaWgIR0Bp+h5Z8rqddX2UKGgGR8BRGnXNC7btaAdLQWgIR0Bp+vXwsoUjdX2UKGgGR8BR0wHzH0btaAdLe2gIR0Bp/CULUkOadX2UKGgGR8BbSrHuJDVpaAdLX2gIR0Bp/FtsN2C/dX2UKGgGR8BuIuOKfnOjaAdLXWgIR0Bp/OKQ7tAtdX2UKGgGR8BXcAOjIq9XaAdLQWgIR0Bp/mT3Zf2LdX2UKGgGR8Bo72zposZpaAdLXmgIR0Bp/zQw9JSSdX2UKGgGR8BoD8m6XjU/aAdLZGgIR0Bp/2/zreImdX2UKGgGR8BVdF6Z6UqyaAdLSmgIR0Bp//0RODaodX2UKGgGR8BYLfZIxxkvaAdLPmgIR0BqAFsvZh8ZdX2UKGgGR8BZaBzmwJPZaAdLV2gIR0BqAUXYUWVNdX2UKGgGR8Bbno8U21lYaAdLaWgIR0BqATdP+GXYdX2UKGgGR8BpjHmaH9FXaAdLS2gIR0BqAXpY9xIbdX2UKGgGR8BqZsqMFUyYaAdLSGgIR0BqA0ZgogFHdX2UKGgGR8BgD6zHCGeuaAdLUmgIR0BqBDZnL7oCdX2UKGgGR8Bgi3kYGdI5aAdLQ2gIR0BqBrDqGDcudX2UKGgGR8BulHnuAqd6aAdLd2gIR0BqBqgK4QSSdX2UKGgGR8BuwcwaisXBaAdLZWgIR0BqB4ybhFVldX2UKGgGR8BgEWCVbA1vaAdLPmgIR0BqCCTKT0QLdX2UKGgGR8B6Bcx20Re1aAdLcmgIR0BqCEbYK6WgdX2UKGgGR8BfcbQPZqVRaAdLRGgIR0BqCJE2Hck/dX2UKGgGR8By3yWzF+/haAdLZGgIR0BqCPYBeXzEdX2UKGgGR8B01ZyZKFqSaAdLaWgIR0BqCWVX3g1ndX2UKGgGR8BUNhAOavzOaAdLUmgIR0BqCbzqbBoFdX2UKGgGR8ByDGbobGWEaAdLYGgIR0BqCy35N47jdX2UKGgGR8BtLpmoR7JGaAdLeGgIR0BqC/i97F85dX2UKGgGR8Bw5EXDWK/EaAdLXWgIR0BqDOax5cC6dX2UKGgGR8BVo+kP+XJHaAdLYWgIR0BqDXVI7NjcdX2UKGgGR8BWRnWvr4WUaAdLY2gIR0BqEMhouf29dX2UKGgGR8B9JsfcN6PbaAdLbmgIR0BqES7I1cdHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bb3353607ca748fb7b04654634a342b315edf921b24983b09c00d97743736db
|
3 |
+
size 146615
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f07ed6c1000>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07ed6c1090>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07ed6c1120>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07ed6c11b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f07ed6c1240>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f07ed6c12d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f07ed6c1360>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07ed6c13f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f07ed6c1480>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07ed6c1510>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07ed6c15a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07ed6c1630>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f07ed6b3a40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1688593978600697236,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFPggz5SHbg/aadFP6aDU765HIK+FYRjvAAAAAAAAAAAo3WAPoBUhD+CqSc+ds5Iv33SvT6oUGI+AAAAAAAAAADllJe+6ha8PzLJOb+Mg2S+TzlSvr6vUL4AAAAAAAAAAOZNBD8lIqQ/uxVOPwXyNr92dzq+1vgcvQAAAAAAAAAAADhjuzffCD++w1A8zcJvv3Q2wLz4OZA9AAAAAAAAAACAhgs9Ll67P2fDLz/MJuM+38wXvQyxy70AAAAAAAAAABR5T7+/NGc+TsFev1Cvqr+WBcU+BQxRPgAAAAAAAAAAzRPwvGczQz/uGRi9yyBwv1kSBr2O3Y29AAAAAAAAAACmlQs+ZqsgPxDGKT6tn3S/c7jSPd9kGj4AAAAAAAAAAM0o7rwNWyU+qxbivGltsr/02Sa9dd5QvAAAAAAAAAAA4fpVv+vtfD8OqdK/Dcdfv/fcpz/yawI+AAAAAAAAAACzgng/XA5TPjaqwT8UXbe/+ImDv/oY+7wAAAAAAAAAAADO+DxCW1U/sJOgPQJvc7/VK6O9aSgLPQAAAAAAAAAAs0BMvppvdj9kg7e+AO86vykBqL2eCrO9AAAAAAAAAACmBD8+L5vIPvquvT5CAa6/IxIkvwCHjb0AAAAAAAAAAM240bstlLQ/GurvvfXPPr2S2O07Of6MPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.6384000000000001,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFYD8lXzUZyMAWyUS0GMAXSUR0BpyyM3qAz6dX2UKGgGR8BMzRr8BMi9aAdLXWgIR0BpywZZSvTxdX2UKGgGR8Bx6yJEYwZgaAdLdWgIR0BpyydlNDc/dX2UKGgGR8BHVdU0elsQaAdLQGgIR0BpzJBAv+OwdX2UKGgGR8BfSmoBJZntaAdLXGgIR0BpzFD+irT6dX2UKGgGR8Bom/TI/7iyaAdLR2gIR0BpzPyqdYnwdX2UKGgGR8BS4RVQyhzvaAdLQ2gIR0BpzSay8jA0dX2UKGgGR8BmExJPIn0DaAdLSGgIR0BpzW912aDxdX2UKGgGR8BlQQ6+36RAaAdLaGgIR0BpzZflZHNHdX2UKGgGR8BVq8N2C/XYaAdLeGgIR0BpziP+4smOdX2UKGgGR8BcCGWpqASWaAdLQmgIR0Bp0d7WuoxYdX2UKGgGR8BSxahUR3/xaAdLO2gIR0Bp0/mgam4zdX2UKGgGR8BcQvYWcjJNaAdLOWgIR0Bp0+rS3LFGdX2UKGgGR8BehFsk6cRUaAdLbmgIR0Bp1SdWhh6TdX2UKGgGR8BlEyThYNiIaAdLZGgIR0Bp1Rk078vVdX2UKGgGR8BYd+54GD+SaAdLS2gIR0Bp1az5XU6QdX2UKGgGR8B7bx/0/W1/aAdLaGgIR0Bp1iMYMvytdX2UKGgGR8BfBDtCzC1raAdLWWgIR0Bp1dbor4FidX2UKGgGR8BZSNiDujREaAdLcGgIR0Bp1xWgezUrdX2UKGgGR8BgPlSEUTL4aAdLaGgIR0Bp19ZJTVDsdX2UKGgGR8B5zmnIhhYvaAdLbGgIR0Bp2HL9uP3jdX2UKGgGR8Bh89GViWmhaAdLWGgIR0Bp2HBWPtD2dX2UKGgGR8BgF1eruIAPaAdLXmgIR0Bp2QB91EE1dX2UKGgGR8B7+NvxYq5LaAdLamgIR0Bp2VE9dNWVdX2UKGgGR8BQbgaFVT73aAdLP2gIR0Bp2fBDXvphdX2UKGgGR8Bax7n9vS+haAdLkmgIR0Bp3AVuaWondX2UKGgGR8BxIxdNWU8naAdLdWgIR0Bp3FsrNGExdX2UKGgGR8BZe1/H5rP/aAdLQmgIR0Bp3XbAUL2IdX2UKGgGR8BlXHJJXhfjaAdLRWgIR0Bp3kM9bHIZdX2UKGgGR8BjLyJfpljFaAdLPmgIR0Bp3s+TvAoHdX2UKGgGR8BvTl+LFXJYaAdLWWgIR0Bp3yUTtb9qdX2UKGgGR8BySAclw97oaAdLXmgIR0Bp39lwtJ4CdX2UKGgGR8BSue7xusLfaAdLY2gIR0Bp4abvw3HadX2UKGgGR8BciKq4pc5baAdLTWgIR0Bp4Z+2E0zkdX2UKGgGR7/5CD7IkqtpaAdLSGgIR0Bp4nXXiBGydX2UKGgGR8BiT0qx1PnCaAdLZmgIR0Bp4xKL876pdX2UKGgGR8BtpGJm/WUbaAdLUWgIR0Bp4z4DcM3IdX2UKGgGR8BrnqXIEKVqaAdLWGgIR0Bp45FTefqYdX2UKGgGR8Bd947/4qPPaAdLQGgIR0Bp5FcOby6MdX2UKGgGR8Bx6RwGW2PUaAdLcmgIR0Bp5DibUgB+dX2UKGgGR8Bt3iKiwjdIaAdLZWgIR0Bp5RML4N7TdX2UKGgGR8BatP2PDHfeaAdLSWgIR0Bp5cJhOP/8dX2UKGgGR8BhT6Hbh3qzaAdLTmgIR0Bp5y24NI9UdX2UKGgGR8B1OLz9S/CZaAdLbGgIR0Bp52Gj9GZvdX2UKGgGR8Bf98jZ+QU6aAdLV2gIR0Bp6emYSg5BdX2UKGgGR8BTr4j8k2P1aAdLPGgIR0Bp6xyuIRAbdX2UKGgGR8BYOBG+bmU4aAdLQWgIR0Bp60tuk1uSdX2UKGgGR8B4BtffGdZraAdLYGgIR0Bp7COzY287dX2UKGgGR8BjRzFERaouaAdLZ2gIR0Bp6/iFTNt7dX2UKGgGR8BXHX0f5k9VaAdLTWgIR0Bp7DfzjFQ3dX2UKGgGR8BeMhdt2s7uaAdLcWgIR0Bp7LriVB2PdX2UKGgGR8B8GfIyTINmaAdLXWgIR0Bp7V2eQMhHdX2UKGgGR8AxwN/OMVDbaAdLXWgIR0Bp7VQuVX3hdX2UKGgGR8Bwiu10DEFXaAdLTmgIR0Bp7lDIBBAwdX2UKGgGR8BQa2luWKMvaAdLQGgIR0Bp78wg1WKedX2UKGgGR8BFlaYNRWLhaAdLZGgIR0Bp7/+qBErodX2UKGgGR8BhCy0BwMpgaAdLW2gIR0Bp8O5QP7N0dX2UKGgGR8BV8/AO8TSLaAdLPGgIR0Bp8k6xPfsNdX2UKGgGR8Bt+mB6KLsKaAdLYWgIR0Bp8qbF0gbIdX2UKGgGR8Bmr8q6OHWSaAdLb2gIR0Bp8s3Kji4sdX2UKGgGR7/dzSThYNiIaAdLWmgIR0Bp81Brvb48dX2UKGgGR8BExT5wfhddaAdLQmgIR0Bp8/4yoGY8dX2UKGgGR8BYTSzTnaFmaAdLPGgIR0Bp9lxIatLddX2UKGgGR8BZ3pvcafjCaAdLQWgIR0Bp9jLOiWVvdX2UKGgGR8BrdbBqKxcFaAdLUWgIR0Bp9sBZIQOGdX2UKGgGR8Bdrn6/IsAeaAdLTmgIR0Bp98ZccENfdX2UKGgGR8BPH3BpHqeLaAdLPmgIR0Bp+CJGe+VUdX2UKGgGR8BgHM/MW43FaAdLZWgIR0Bp+KufVZs9dX2UKGgGR8BdqOearmyPaAdLPGgIR0Bp+hDkU9IPdX2UKGgGR8BiIFsxfv4NaAdLZ2gIR0Bp+l5nlGPQdX2UKGgGR8Bp24te2NNraAdLaWgIR0Bp+h5Z8rqddX2UKGgGR8BRGnXNC7btaAdLQWgIR0Bp+vXwsoUjdX2UKGgGR8BR0wHzH0btaAdLe2gIR0Bp/CULUkOadX2UKGgGR8BbSrHuJDVpaAdLX2gIR0Bp/FtsN2C/dX2UKGgGR8BuIuOKfnOjaAdLXWgIR0Bp/OKQ7tAtdX2UKGgGR8BXcAOjIq9XaAdLQWgIR0Bp/mT3Zf2LdX2UKGgGR8Bo72zposZpaAdLXmgIR0Bp/zQw9JSSdX2UKGgGR8BoD8m6XjU/aAdLZGgIR0Bp/2/zreImdX2UKGgGR8BVdF6Z6UqyaAdLSmgIR0Bp//0RODaodX2UKGgGR8BYLfZIxxkvaAdLPmgIR0BqAFsvZh8ZdX2UKGgGR8BZaBzmwJPZaAdLV2gIR0BqAUXYUWVNdX2UKGgGR8Bbno8U21lYaAdLaWgIR0BqATdP+GXYdX2UKGgGR8BpjHmaH9FXaAdLS2gIR0BqAXpY9xIbdX2UKGgGR8BqZsqMFUyYaAdLSGgIR0BqA0ZgogFHdX2UKGgGR8BgD6zHCGeuaAdLUmgIR0BqBDZnL7oCdX2UKGgGR8Bgi3kYGdI5aAdLQ2gIR0BqBrDqGDcudX2UKGgGR8BulHnuAqd6aAdLd2gIR0BqBqgK4QSSdX2UKGgGR8BuwcwaisXBaAdLZWgIR0BqB4ybhFVldX2UKGgGR8BgEWCVbA1vaAdLPmgIR0BqCCTKT0QLdX2UKGgGR8B6Bcx20Re1aAdLcmgIR0BqCEbYK6WgdX2UKGgGR8BfcbQPZqVRaAdLRGgIR0BqCJE2Hck/dX2UKGgGR8By3yWzF+/haAdLZGgIR0BqCPYBeXzEdX2UKGgGR8B01ZyZKFqSaAdLaWgIR0BqCWVX3g1ndX2UKGgGR8BUNhAOavzOaAdLUmgIR0BqCbzqbBoFdX2UKGgGR8ByDGbobGWEaAdLYGgIR0BqCy35N47jdX2UKGgGR8BtLpmoR7JGaAdLeGgIR0BqC/i97F85dX2UKGgGR8Bw5EXDWK/EaAdLXWgIR0BqDOax5cC6dX2UKGgGR8BVo+kP+XJHaAdLYWgIR0BqDXVI7NjcdX2UKGgGR8BWRnWvr4WUaAdLY2gIR0BqEMhouf29dX2UKGgGR8B9JsfcN6PbaAdLbmgIR0BqES7I1cdHdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8998bb042649576ae0e0d8bb4b70dd6fe584527269617975c7ecb560b3a58f43
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95bdea5853d2f427352d49961873c3b32bec361d23297309102c4c4d575492d0
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (206 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -202.97675485541112, "std_reward": 120.08863146966546, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-05T21:58:35.725288"}
|