--- library_name: transformers license: apache-2.0 base_model: PrimeIntellect/INTELLECT-1-Instruct tags: - axolotl - generated_from_trainer datasets: - neginashz/rationale-llama-chat-dataset model-index: - name: star-sft-intellect-instruct-5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: PrimeIntellect/INTELLECT-1-Instruct trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer gpu_memory_limit: deepspeed: deepspeed_configs/zero2.json load_in_8bit: load_in_4bit: strict: false chat_template: llama3 datasets: - path: neginashz/rationale-llama-chat-dataset type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant #roles_to_train: ["assistant"] # default # Optional[str]. Which EOS tokens to train on in the conversation. Possible values are: # - all: train on all EOS tokens # - turn (default): train on the EOS token at the end of each trainable turn # - last: train on the last EOS token in the conversation #train_on_eos: turn dataset_prepared_path: val_set_size: 0.05 output_dir: ./star-sft-intellect-5 sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: star-sft-intellect-instruct-5 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_checkpointing: true #gradient_clipping: true gradient_accumulation_steps: 1 #batch_size: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: eval_steps: save_steps: evals_per_epoch: 16 saves_per_epoch: 4 eval_max_new_tokens: 128 debug: weight_decay: fsdp: fsdp_config: hub_model_id: neginashz/star-sft-intellect-instruct-5 hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true #special_tokens: # pad_token: <|end_of_text|> ```

# star-sft-intellect-instruct-5 This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co./PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 6 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4105 | 0.0664 | 15 | 0.4274 | | 0.4759 | 0.1327 | 30 | 0.4348 | | 0.4704 | 0.1991 | 45 | 0.4255 | | 0.4612 | 0.2655 | 60 | 0.4167 | | 0.4765 | 0.3319 | 75 | 0.4030 | | 0.4022 | 0.3982 | 90 | 0.3932 | | 0.4234 | 0.4646 | 105 | 0.3856 | | 0.4008 | 0.5310 | 120 | 0.3736 | | 0.4066 | 0.5973 | 135 | 0.3649 | | 0.4007 | 0.6637 | 150 | 0.3568 | | 0.4059 | 0.7301 | 165 | 0.3491 | | 0.3622 | 0.7965 | 180 | 0.3429 | | 0.3655 | 0.8628 | 195 | 0.3388 | | 0.3655 | 0.9292 | 210 | 0.3368 | | 0.3868 | 0.9956 | 225 | 0.3364 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0