---
library_name: transformers
license: apache-2.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- neginashz/rationale-llama-chat-dataset
model-index:
- name: star-sft-intellect-instruct-5
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.6.0`
```yaml
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gpu_memory_limit:
deepspeed: deepspeed_configs/zero2.json
load_in_8bit:
load_in_4bit:
strict: false
chat_template: llama3
datasets:
- path: neginashz/rationale-llama-chat-dataset
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
#roles_to_train: ["assistant"] # default
# Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
# - all: train on all EOS tokens
# - turn (default): train on the EOS token at the end of each trainable turn
# - last: train on the last EOS token in the conversation
#train_on_eos: turn
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./star-sft-intellect-5
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: star-sft-intellect-instruct-5
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_checkpointing: true
#gradient_clipping: true
gradient_accumulation_steps: 1
#batch_size: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps:
save_steps:
evals_per_epoch: 16
saves_per_epoch: 4
eval_max_new_tokens: 128
debug:
weight_decay:
fsdp:
fsdp_config:
hub_model_id: neginashz/star-sft-intellect-instruct-5
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
#special_tokens:
# pad_token: <|end_of_text|>
```
# star-sft-intellect-instruct-5
This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co./PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3364
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4105 | 0.0664 | 15 | 0.4274 |
| 0.4759 | 0.1327 | 30 | 0.4348 |
| 0.4704 | 0.1991 | 45 | 0.4255 |
| 0.4612 | 0.2655 | 60 | 0.4167 |
| 0.4765 | 0.3319 | 75 | 0.4030 |
| 0.4022 | 0.3982 | 90 | 0.3932 |
| 0.4234 | 0.4646 | 105 | 0.3856 |
| 0.4008 | 0.5310 | 120 | 0.3736 |
| 0.4066 | 0.5973 | 135 | 0.3649 |
| 0.4007 | 0.6637 | 150 | 0.3568 |
| 0.4059 | 0.7301 | 165 | 0.3491 |
| 0.3622 | 0.7965 | 180 | 0.3429 |
| 0.3655 | 0.8628 | 195 | 0.3388 |
| 0.3655 | 0.9292 | 210 | 0.3368 |
| 0.3868 | 0.9956 | 225 | 0.3364 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0