--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer datasets: - medalpaca/medical_meadow_medqa model-index: - name: lora-qwen-25-7b-instruct results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: load_in_4bit: strict: false datasets: - path: medalpaca/medical_meadow_medqa type: alpaca dataset_prepared_path: val_set_size: 0.1 output_dir: ./lora-qwen25 sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: lora lora_r: 256 lora_alpha: 128 lora_dropout: 0.05 #lora_target_modules: # - q_proj # - v_proj # - k_proj # - o_proj # - gate_proj # - down_proj # - up_proj lora_target_linear: true wandb_project: lora-qwen-25-7b-instruct wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: eval_steps: save_steps: evals_per_epoch: 16 saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: fsdp: fsdp_config: special_tokens: hub_model_id: neginashz/lora-qwen-25-7b-instruct hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true ```

# lora-qwen-25-7b-instruct This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co./Qwen/Qwen2.5-7B-Instruct) on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set: - Loss: 0.1181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 7 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.774 | 0.0741 | 6 | 2.5571 | | 1.4649 | 0.1481 | 12 | 1.3144 | | 0.649 | 0.2222 | 18 | 0.4603 | | 0.1557 | 0.2963 | 24 | 0.1620 | | 0.1792 | 0.3704 | 30 | 0.1539 | | 0.1432 | 0.4444 | 36 | 0.1422 | | 0.1393 | 0.5185 | 42 | 0.1385 | | 0.1137 | 0.5926 | 48 | 0.1340 | | 0.1246 | 0.6667 | 54 | 0.1317 | | 0.1235 | 0.7407 | 60 | 0.1313 | | 0.123 | 0.8148 | 66 | 0.1293 | | 0.1413 | 0.8889 | 72 | 0.1277 | | 0.1338 | 0.9630 | 78 | 0.1268 | | 0.1093 | 1.0247 | 84 | 0.1263 | | 0.1442 | 1.0988 | 90 | 0.1265 | | 0.1127 | 1.1728 | 96 | 0.1244 | | 0.137 | 1.2469 | 102 | 0.1231 | | 0.1098 | 1.3210 | 108 | 0.1224 | | 0.1276 | 1.3951 | 114 | 0.1223 | | 0.102 | 1.4691 | 120 | 0.1215 | | 0.1208 | 1.5432 | 126 | 0.1217 | | 0.1143 | 1.6173 | 132 | 0.1211 | | 0.1315 | 1.6914 | 138 | 0.1204 | | 0.1166 | 1.7654 | 144 | 0.1200 | | 0.1055 | 1.8395 | 150 | 0.1200 | | 0.1235 | 1.9136 | 156 | 0.1194 | | 0.12 | 1.9877 | 162 | 0.1193 | | 0.0982 | 2.0494 | 168 | 0.1193 | | 0.1129 | 2.1235 | 174 | 0.1188 | | 0.1094 | 2.1975 | 180 | 0.1190 | | 0.1216 | 2.2716 | 186 | 0.1191 | | 0.1387 | 2.3457 | 192 | 0.1187 | | 0.1001 | 2.4198 | 198 | 0.1184 | | 0.1031 | 2.4938 | 204 | 0.1185 | | 0.0818 | 2.5679 | 210 | 0.1183 | | 0.126 | 2.6420 | 216 | 0.1185 | | 0.124 | 2.7160 | 222 | 0.1183 | | 0.1193 | 2.7901 | 228 | 0.1184 | | 0.1082 | 2.8642 | 234 | 0.1183 | | 0.1181 | 2.9383 | 240 | 0.1181 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0