pattaraearth
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -40,7 +40,7 @@ text = pipe("audio_path.wav")["text"]
|
|
40 |
print(text)
|
41 |
```
|
42 |
|
43 |
-
## Evaluation Performance
|
44 |
WER calculated with newmm tokenizer for Thai word segmentation.
|
45 |
| Model | CV18 (WER) | Gowejee (WER) | LOTUS-TRD (WER) | Thai Dialect (WER) | Elderly (WER) | Gigaspeech2 (WER) | Fleurs (WER) | Distant Meeting (WER) | Podcast (WER) |
|
46 |
|:----------------------------------------|:----------------------:|:-------------------------:|:----------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|
|
@@ -50,7 +50,7 @@ WER calculated with newmm tokenizer for Thai word segmentation.
|
|
50 |
| monsoon-whisper-medium-gigaspeech2 | 11.66 | 20.50 | 41.04 | 42.06 | 7.57 | 21.40 | 21.54 | 51.65 | 38.89 |
|
51 |
| pathumma-whisper-th-large-v3 | 8.68 | 9.84 | 15.47 | 19.85 | 1.53 | 21.66 | 15.65 | 51.56 | 36.47 |
|
52 |
|
53 |
-
**Note:** Other models not target fine-tuned on dialect datasets may be less representative of dialect performance.
|
54 |
|
55 |
## Limitations and Future Work
|
56 |
Additional information is needed
|
|
|
40 |
print(text)
|
41 |
```
|
42 |
|
43 |
+
<!-- ## Evaluation Performance
|
44 |
WER calculated with newmm tokenizer for Thai word segmentation.
|
45 |
| Model | CV18 (WER) | Gowejee (WER) | LOTUS-TRD (WER) | Thai Dialect (WER) | Elderly (WER) | Gigaspeech2 (WER) | Fleurs (WER) | Distant Meeting (WER) | Podcast (WER) |
|
46 |
|:----------------------------------------|:----------------------:|:-------------------------:|:----------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|
|
|
|
50 |
| monsoon-whisper-medium-gigaspeech2 | 11.66 | 20.50 | 41.04 | 42.06 | 7.57 | 21.40 | 21.54 | 51.65 | 38.89 |
|
51 |
| pathumma-whisper-th-large-v3 | 8.68 | 9.84 | 15.47 | 19.85 | 1.53 | 21.66 | 15.65 | 51.56 | 36.47 |
|
52 |
|
53 |
+
**Note:** Other models not target fine-tuned on dialect datasets may be less representative of dialect performance. -->
|
54 |
|
55 |
## Limitations and Future Work
|
56 |
Additional information is needed
|