File size: 2,315 Bytes
062ede4 fe7e9a9 062ede4 7c34289 062ede4 7c34289 062ede4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
---
# Model Specifications
- **Max Sequence Length**: 16384 (with auto support for RoPE Scaling)
- **Data Type**: Auto detection, with options for Float16 and Bfloat16
- **Quantization**: 4bit, to reduce memory usage
## Training Data
Used a private dataset with hundreds of technical tutorials and associated summaries.
## Implementation Highlights
- **Efficiency**: Emphasis on reducing memory usage and accelerating download speeds through 4bit quantization.
- **Adaptability**: Auto detection of data types and support for advanced configuration options like RoPE scaling, LoRA, and gradient checkpointing.
## Uploaded Model
- **Developed by:** ndebuhr
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit
# Configuration and Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
input_text = ""
# Set device based on CUDA availability
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model and tokenizer
model_name = "ndebuhr/Mistral-7B-Technical-Tutorial-Summarization-QLoRA"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
instruction = "Clarify and summarize this tutorial transcript"
prompt = """{}
### Raw Transcript:
{}
### Summary:
"""
# Tokenize the input text
inputs = tokenizer(
prompt.format(instruction, input_text),
return_tensors="pt",
truncation=True,
max_length=16384
).to(device)
# Generate outputs
outputs = model.generate(
**inputs,
max_length=16384,
num_return_sequences=1,
use_cache=True
)
# Decode the generated text
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
```
## Compute Infrastructure
* Fine-tuning: used 1xA100 (40GB)
* Inference: recommend 1xL4 (24GB)
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|