--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-large-orgs-v1 results: [] --- # deberta-v3-large-orgs-v1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co./microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - Precision: 0.8037 - Recall: 0.7601 - F1: 0.7813 - Accuracy: 0.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0612 | 1.0 | 1710 | 0.1069 | 0.7827 | 0.7741 | 0.7784 | 0.9612 | | 0.0502 | 2.0 | 3420 | 0.1225 | 0.8034 | 0.7461 | 0.7737 | 0.9606 | | 0.0285 | 3.0 | 5130 | 0.1343 | 0.8037 | 0.7601 | 0.7813 | 0.9617 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.15.0 - Tokenizers 0.15.0