--- library_name: transformers license: apache-2.0 base_model: - nbeerbower/flammen16-mistral-7B datasets: - wenbopan/Chinese-dpo-pairs tags: - experimental --- ![image/png](https://huggingface.co./nbeerbower/flammen13X-mistral-7B/resolve/main/flammen13x.png) # flammen16-chinese-DPO-7B A Mistral 7B LLM built from merging pretrained models and finetuning on [Wenbo Pan](https://huggingface.co./wenbopan)'s [Chinese DPO Pairs](https://huggingface.co./datasets/wenbopan/Chinese-dpo-pairs). Flammen specializes in exceptional character roleplay, creative writing, and general intelligence. Please note this is an experimental model and is not recommended for production use. 我是一款基于混合预训练模型并在温博潘的中文DPO对话双方数据上微调的缅德尔7B大语言模型(LLM)。它的特长在于出色的角色扮演、创造性写作和通用智能。请注意,这是一个实验性模型,不适宜生产使用。 ### Method Finetuned using an A100 on Google Colab. 🙏 [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co./mlabonne) ### Configuration LoRA, model, and training settings: ```python # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) model.config.use_cache = False # Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) # Training arguments training_args = TrainingArguments( per_device_train_batch_size=2, gradient_accumulation_steps=2, gradient_checkpointing=True, learning_rate=2e-5, lr_scheduler_type="cosine", max_steps=1000, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) # Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, force_use_ref_model=True ) # Fine-tune model with DPO dpo_trainer.train() ```