File size: 4,053 Bytes
8c91ddb 4d69e5b 8c91ddb 5de156e 4d69e5b 8c91ddb 5de156e 8c91ddb 5de156e 8c91ddb 5de156e 8c91ddb 5de156e 8c91ddb 5de156e 8c91ddb 4d69e5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
license: llama3.1
library_name: transformers
base_model:
- mlabonne/Hermes-3-Llama-3.1-70B-lorablated
datasets:
- jondurbin/gutenberg-dpo-v0.1
- nbeerbower/gutenberg2-dpo
model-index:
- name: Llama3.1-Gutenberg-Doppel-70B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 70.92
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 52.56
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 13.75
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.64
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 22.68
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.52
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
name: Open LLM Leaderboard
---
![image/png](https://huggingface.co./nbeerbower/Mistral-Small-Gutenberg-Doppel-22B/resolve/main/doppel-header?download=true)
# Llama3.1-Gutenberg-Doppel-70B
[mlabonne/Hermes-3-Llama-3.1-70B-lorablated](https://huggingface.co./mlabonne/Hermes-3-Llama-3.1-70B-lorablated) finetuned on [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co./datasets/jondurbin/gutenberg-dpo-v0.1) and [nbeerbower/gutenberg2-dpo](https://huggingface.co./datasets/nbeerbower/gutenberg2-dpo).
### Method
[ORPO tuned](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) with 2x H100 for 3 epochs.
Thank you [Schneewolf Labs](https://schneewolflabs.com/) for the compute.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_nbeerbower__Llama3.1-Gutenberg-Doppel-70B)
| Metric |Value|
|-------------------|----:|
|Avg. |35.68|
|IFEval (0-Shot) |70.92|
|BBH (3-Shot) |52.56|
|MATH Lvl 5 (4-Shot)|13.75|
|GPQA (0-shot) |12.64|
|MuSR (0-shot) |22.68|
|MMLU-PRO (5-shot) |41.52|
|