File size: 4,053 Bytes
8c91ddb
4d69e5b
8c91ddb
5de156e
 
 
 
 
4d69e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c91ddb
5de156e
8c91ddb
5de156e
8c91ddb
5de156e
8c91ddb
5de156e
8c91ddb
5de156e
8c91ddb
4d69e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: llama3.1
library_name: transformers
base_model:
- mlabonne/Hermes-3-Llama-3.1-70B-lorablated
datasets:
- jondurbin/gutenberg-dpo-v0.1
- nbeerbower/gutenberg2-dpo
model-index:
- name: Llama3.1-Gutenberg-Doppel-70B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 70.92
      name: strict accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 52.56
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 13.75
      name: exact match
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.64
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 22.68
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 41.52
      name: accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama3.1-Gutenberg-Doppel-70B
      name: Open LLM Leaderboard
---
![image/png](https://huggingface.co./nbeerbower/Mistral-Small-Gutenberg-Doppel-22B/resolve/main/doppel-header?download=true)

# Llama3.1-Gutenberg-Doppel-70B

[mlabonne/Hermes-3-Llama-3.1-70B-lorablated](https://huggingface.co./mlabonne/Hermes-3-Llama-3.1-70B-lorablated) finetuned on [jondurbin/gutenberg-dpo-v0.1](https://huggingface.co./datasets/jondurbin/gutenberg-dpo-v0.1) and [nbeerbower/gutenberg2-dpo](https://huggingface.co./datasets/nbeerbower/gutenberg2-dpo).

### Method

[ORPO tuned](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) with 2x H100 for 3 epochs.

Thank you [Schneewolf Labs](https://schneewolflabs.com/) for the compute.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_nbeerbower__Llama3.1-Gutenberg-Doppel-70B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |35.68|
|IFEval (0-Shot)    |70.92|
|BBH (3-Shot)       |52.56|
|MATH Lvl 5 (4-Shot)|13.75|
|GPQA (0-shot)      |12.64|
|MuSR (0-shot)      |22.68|
|MMLU-PRO (5-shot)  |41.52|