File size: 5,242 Bytes
d7c5a8c
713defa
d7c5a8c
 
 
 
713defa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7c5a8c
28448ab
eedf5d6
d7c5a8c
eedf5d6
d7c5a8c
eedf5d6
d7c5a8c
eedf5d6
d7c5a8c
dd7f5c0
eedf5d6
 
 
 
 
d7c5a8c
eedf5d6
 
d7c5a8c
eedf5d6
d7c5a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eedf5d6
 
 
 
 
 
713defa
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
license: llama3.1
library_name: transformers
tags:
- mergekit
- merge
base_model:
- nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
- mlabonne/Llama-3-70B-Instruct-abliterated-LORA
model-index:
- name: Llama-3.1-Nemotron-lorablated-70B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 71.47
      name: strict accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 48.06
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 23.34
      name: exact match
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.89
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 14.92
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 43.46
      name: accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Llama-3.1-Nemotron-lorablated-70B
      name: Open LLM Leaderboard
---
![image/png](https://huggingface.co./nbeerbower/Llama-3.1-Nemotron-lorablated-70B/resolve/main/nemotron.png?download=true)
# Llama-3.1-Nemotron-lorablated-70B

An uncensored version of [nvidia/Llama-3.1-Nemotron-70B-Instruct-HF](https://huggingface.co./nvidia/Llama-3.1-Nemotron-70B-Instruct-HF) created by merging [mlabonne/Llama-3-70B-Instruct-abliterated-LORA](https://huggingface.co./mlabonne/Llama-3-70B-Instruct-abliterated-LORA) using [task arithmetic](https://arxiv.org/abs/2212.04089).

## Method

This model was created using [mergekit](https://github.com/cg123/mergekit).

From Ubuntu 24.04 (as root):
```
apt update
apt install pipx
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit && pipx install -e .

mergekit-yaml config.yaml Llama-3.1-Nemotron-lorablated-70B --allow-crimes --lora-merge-cache=./cache
```

See [@mlabonne](https://huggingface.co./mlabonne)'s [Llama-3.1-70B-Instruct-lorablated](https://huggingface.co./mlabonne/Llama-3.1-70B-Instruct-lorablated) for more details on how the LoRA was extracted.

### Configuration

The following YAML configuration was used to produce this model:

```yaml
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF+mlabonne/Llama-3-70B-Instruct-abliterated-LORA
dtype: bfloat16
merge_method: task_arithmetic
parameters:
  normalize: false
slices:
- sources:
  - layer_range: [0, 80]
    model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF+mlabonne/Llama-3-70B-Instruct-abliterated-LORA
    parameters:
      weight: 1.0

```

### Acknowlegements

Thanks to [@mlabonne](https://huggingface.co./mlabonne), [@grimjim](https://huggingface.co./grimjim), and [@failspy](https://huggingface.co./failspy) for pioneering this technique for uncensoring models.

Compute provided by [Hetzner](https://www.hetzner.com/) and funded by [Schneewolf Labs](https://schneewolflabs.com/).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_nbeerbower__Llama-3.1-Nemotron-lorablated-70B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |33.69|
|IFEval (0-Shot)    |71.47|
|BBH (3-Shot)       |48.06|
|MATH Lvl 5 (4-Shot)|23.34|
|GPQA (0-shot)      | 0.89|
|MuSR (0-shot)      |14.92|
|MMLU-PRO (5-shot)  |43.46|