File size: 2,916 Bytes
1135bf9
79d33e1
 
 
 
1135bf9
79d33e1
 
 
 
 
 
 
c02fca7
79d33e1
1135bf9
 
79d33e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b06ed5
79d33e1
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
language:
- en
- ko
license: llama3
library_name: transformers
tags:
- translation
- enko
- ko
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- squarelike/sharegpt_deepl_ko_translation
pipeline_tag: text-generation
---

# **Introduction**
This model was trained to translate a sentence from English to Korean using the 486k dataset from [squarelike/sharegpt_deepl_ko_translation](https://huggingface.co./datasets/nayohan/aihub-en-ko-translation-1.2m).

### **Loading the Model**

Use the following Python code to load the model:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nayohan/llama3-8b-it-translation-sharegpt-en-ko"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
  model_name,
  device_map="auto",
  torch_dtype=torch.bfloat16
)
```

### **Generating Text**
This model supports translation from English to Korean. To generate text, use the following Python code: 
```python
system_prompt="๋‹น์‹ ์€ ๋ฒˆ์—ญ๊ธฐ ์ž…๋‹ˆ๋‹ค. ์˜์–ด๋ฅผ ํ•œ๊ตญ์–ด๋กœ ๋ฒˆ์—ญํ•˜์„ธ์š”."
sentence = "The aerospace industry is a flower in the field of technology and science."
conversation = [{'role': 'system', 'content': system_prompt},
                {'role': 'user', 'content': sentence}]

inputs = tokenizer.apply_chat_template(
  conversation,
  tokenize=True,
  add_generation_prompt=True,
  return_tensors='pt'
).to("cuda")

outputs = model.generate(inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0][len(inputs[0]):]))
```
```
# Result
# INPUT: <|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nActs as a translator. Translate en sentences into ko sentences in  colloquial style.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nThe aerospace industry is a flower in the field of technology and science.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n
# OUTPUT: ํ•ญ๊ณต์šฐ์ฃผ ์‚ฐ์—…์€ ๊ธฐ์ˆ ๊ณผ ๊ณผํ•™ ๋ถ„์•ผ์˜ ๊ฝƒ์ž…๋‹ˆ๋‹ค.<|eot_id|>

# INPUT:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n๋‹น์‹ ์€ ๋ฒˆ์—ญ๊ธฐ ์ž…๋‹ˆ๋‹ค. ์˜์–ด๋ฅผ ํ•œ๊ตญ์–ด๋กœ ๋ฒˆ์—ญํ•˜์„ธ์š”.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n
Technical and basic sciences are very important in terms of research. It has a significant impact on the industrial development of a country. Government policies control the research budget.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n
# OUTPUT: ๊ธฐ์ˆ  ๋ฐ ๊ธฐ์ดˆ ๊ณผํ•™์€ ์—ฐ๊ตฌ ์ธก๋ฉด์—์„œ ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ•œ ๊ตญ๊ฐ€์˜ ์‚ฐ์—… ๋ฐœ์ „์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค. ์ •๋ถ€ ์ •์ฑ…์— ๋”ฐ๋ผ ์—ฐ๊ตฌ ์˜ˆ์‚ฐ์ด ๊ฒฐ์ •๋ฉ๋‹ˆ๋‹ค.<|eot_id|>

```

### **Citation**
```bibtex
@article{llama3modelcard,
        title={Llama 3 Model Card},
        author={AI@Meta},
        year={2024},
        url={https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```
Our trainig code can be found here: [TBD]