--- datasets: - squad_v2 language: en license: mit pipeline_tag: question-answering tags: - deberta - deberta-v3 model-index: - name: navteca/deberta-v3-base-squad2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 83.8248 verified: true - name: F1 type: f1 value: 87.41 verified: true - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Exact Match type: exact_match value: 84.9678 verified: true - name: F1 type: f1 value: 92.2777 verified: true --- # Deberta v3 base model for QA (SQuAD 2.0) This is the [deberta-v3-base](https://huggingface.co./microsoft/deberta-v3-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co./datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. ## Training Data The models have been trained on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. It can be used for question answering task. ## Usage and Performance The trained model can be used like this: ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline # Load model & tokenizer deberta_model = AutoModelForQuestionAnswering.from_pretrained('navteca/deberta-v3-base-squad2') deberta_tokenizer = AutoTokenizer.from_pretrained('navteca/deberta-v3-base-squad2') # Get predictions nlp = pipeline('question-answering', model=deberta_model, tokenizer=deberta_tokenizer) result = nlp({ 'question': 'How many people live in Berlin?', 'context': 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.' }) print(result) #{ # "answer": "3,520,031" # "end": 36, # "score": 0.96186668, # "start": 27, #} ``` ## Author [deepset](http://deepset.ai/)